1) (a) Prove that if \(G \) is finite group and \(\lambda(x) \) is a linear character of \(G \), then for any irreducible character \(\chi \) of \(G \), the function \(\chi^\ast \) defined by \(\chi^\ast(\sigma) = \lambda(\sigma)\chi(\sigma) \) for all \(\sigma \in G \) is also an irreducible character of \(G \).

2) The Dihedral group \(D_4 \) of order 8 is generated by two elements \(a \) and \(b \) subject to the relations
\[
(i) \quad a^4 = b^2 = 1 \quad \text{and} \quad (ii) \quad b^{-1}ab = a^3.
\]
Note that (ii) shows that \(ab = ba^3 \) which implies that we can write any element of \(D_8 \) in the form \(b^x a^y \) for some \(x \) and \(y \). Hence, the elements of \(D_8 \) are 1, \(a \), \(a^2 \), \(a^3 \), \(b \), \(ba \), \(ba^2 \), \(ba^3 \).

(a) Show that the conjugacy classes of \(D_8 \) are \(\{1\} \), \(\{a^2\} \), \(\{a, a^3\} \), \(\{b, ba^2\} \), and \(\{ba, ba^3\} \).

(b) The center of \(D_8 \), \(C(D_8) \), is the set of all elements of \(D_8 \) which commute with all the elements of \(D_8 \). Find \(C(D_8) \).

(c) Find the irreducible representations of \(D_8/C(D_8) \) and the lifting of these representations to \(D_8 \).

(d) Construct the character table of \(D_8 \). Describe your methods.

3) Let \(S_2 \times S_2 \) be the Young subgroup of \(S_4 \). For all irreducible representations \(A \) of \(S_2 \times S_2 \), find the character \(\chi_A^{S_4} \) and decompose it into irreducible characters of \(S_4 \).

4) Let \(A : G \to GL_n(\mathbb{C}) \) and \(B : G \to GL_n(\mathbb{C}) \) be two representations of a finite group \(G \) of the same degree. Suppose that for each \(\sigma \in G \), there is a matrix \(D(\sigma) \) such that
\[
D(\sigma)A(\sigma)D(\sigma)^{-1} = B(\sigma).
\]
Prove that \(A \) is similar to \(B \), i.e. there is a fixed invertible matrix \(T \) such that for all \(\sigma \in G \),
\[
TA(\sigma)T^{-1} = B(\sigma).
\]

5) Let \(G \) be a finite group be the finite group of order 12 which is generated by two elements \(a \) and \(b \) defined by the relations
\[
a^6 = 1 \quad a^3 = (ab)^2 = b^2.
\]
(a) Show that \(ba = a^5b \).

(b) Show that the conjugacy classes of \(G \) are \(\{\epsilon\}, \{a^3\}, \{a, a^5\}, \{a^2, a^4\}, \{b, ba^2b, ba^4b\}, \{ab, a^3b, a^5b\} \).

(c) Show that the center \(Z \) of \(G \) is \(Z = \{\epsilon, a^3\} \).

(d) Show that the commutator subgroup \(G' \) of \(G \) is \(G' = \{\epsilon, a^2, a^4\} \) and that \(G/G' \) is isomorphic to the cyclic group \(\mathbb{Z}_4 \).

(e) Find the four linear characters of \(G \) by lifting the characters from \(G/G' \).

(f) Use the orthogonality relations of the characters to complete the character table of \(G \). (Hint: Use both sets of orthogonality relations. You can also use problem 1.)