1) Let G be a finite group. Suppose that $A : G \to M_n(C)$ is a map such that

(i) $A(\epsilon)$ is non-zero and

(ii) For all $\alpha, \beta \in G$, $A(\alpha)A(\beta) = A(\alpha \beta)$.

Show that there is a non-singular matrix $\Theta \in M_n(C)$ such that for all $\alpha \in G$,

$$\Theta A(\alpha) \Theta^{-1} = \begin{bmatrix} B(\alpha) & 0 \\ 0 & 0 \end{bmatrix}$$

where B is a representation of G.

(2) Let C_3 be the cyclic group of order 3, say $C_3 = \{\epsilon, a, a^2\}$, and R be the real numbers. Show that the representation $A : C_3 \to GL_2(R)$ defined by

$$A(a) = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$$

is irreducible over R.

(3) Let G be subgroup of the symmetric group S_n. Suppose that V has a basis v_1, \ldots, v_n such that

$$\sigma v_i = v_{\sigma(i)} \quad \forall \sigma \in G.$$

Let $u_i = v_i - v_n$ for $i = 1, \ldots, n - 1$ and let U be the subspace generated by $\{u_1, \ldots, u_{n-1}\}$. (a) Show that U is an $n - 1$-dimensional G-module.

(b) In the particular case where $G = S_4$, find the 3×3 matrices that describe the action of

$$\tau = (12), \quad \tau = (123), \quad \tau = (12)(34), \quad \tau = (1234)$$

on U relative to the basis $\{u_1, u_2, u_3\}$ and obtain the character values in each case. Use this to show that U is an irreducible S_4-module in this case.

(c) Show that in the special case where $G = A_4$ is the alternating group, U is also an irreducible A_4-module.

(d) Consider the special case when A_5. Is U an irreducible A_5-module?

(4) Show that if $\{X_1, \ldots, X_n\}$ is a group of commuting matrices in $GL_n(C)$, there is a $\Theta \in GL_n(C)$ such that for all j, $\Theta^{-1}X_j\Theta$ is a diagonal matrix.