A Fundamental Region for Hecke's Modular Group

RONALD EVANS

Department of Mathematics, University of Illinois,
Urbana, Illinois 61801

Communicated by P. T. Bateman

Received October 1, 1970; revised December 1, 1971

Hecke proved analytically that when \(h > 2 \) or when \(h = 2 \cos(\pi/q), q \in \mathbb{Z}, q > 3, \) then \(B(h) = \{ \tau: \text{Im} \tau > 0, |\text{Re} \tau| < \lambda/2, |\tau| > 1 \} \) is a fundamental region for the group \(G(h) = \langle S_A, T \rangle, \) where \(S_A: \tau \mapsto \tau + \lambda \) and \(T: \tau \mapsto -1/\tau. \)

He also showed that \(B(\lambda) \) fails to be a fundamental region for all other \(\lambda > 0 \) by proving that \(G(\lambda) \) is not discontinuous. We give an elementary proof of these facts and prove a related result concerning the distribution of \(G(\lambda) \)-equivalent points.

For each \(\lambda > 0, \) let \(G(\lambda) \) be the group generated by the transformations \(S_A: \tau \mapsto \tau + \lambda \) and \(T: \tau \mapsto -1/\tau \) defined on \(H = \{ \tau: \text{Im} \tau > 0 \}. \) Let \(B(\lambda) = \{ \tau \in H: |\text{Re} \tau| < \lambda/2, |\tau| > 1 \}. \) Let \(\mathbb{Z} \) denote the integers.

Hecke \([1, \text{pp. 11}-20; 2, \text{pp. 599}-616]\) proved analytically that \(B(\lambda) \) is a fundamental region (as defined in \([3, \text{p. 22}]\)) for \(G(\lambda) \) when \(h \geq 2 \) or when \(\lambda = 2 \cos(\pi/q) \) for some \(q \in \mathbb{Z}, q > 3 \) (in the latter case we write \(\lambda \in \mathbb{C} \)). We give an elementary proof of this fact. When \(0 < \lambda < 2, \lambda \notin \mathbb{C}, \) Hecke \([2, \text{pp. 609, 613}-614]\) proved that \(G(\lambda) \) is not discontinuous (so that there can be no fundamental region for \(G(\lambda) \)). We present here a slightly simplified version of his proof and show, moreover, that for any \(\tau \in H, \) the set of all points \(G(\lambda) \)-equivalent to \(\tau \) is dense in \(H. \)

Theorem 1. Each \(\gamma \in H \) is \(G(\lambda) \)-equivalent to a point in \(\overline{B(\lambda)} \), (the closure of \(B(\lambda) \)).

Proof. Define the following transformations on \(H: \)

\[T_1: \tau \mapsto \tau/|\tau|^2 \text{ (reflection in the unit circle)}, \]
\[T_2: \tau \mapsto -\tau \text{ (reflection in the line Re } \tau = 0), \]
\[T_3: \tau \mapsto -(\tau + \lambda) \text{ (reflection in the line Re } \tau = -\lambda/2). \]

Since \(S_A = T_2 T_3 \) and \(T = T_1 T_2, \) it is easily seen that \(G(\lambda) \) consists of the
words in $\langle T_1, T_2, T_3 \rangle$ of even length. Hence, it suffices to find $V \in \langle T_1, T_2, T_3 \rangle$ such that $V \gamma \in B(\lambda)$, if for $V \notin G(\lambda)$, then $T_2 V \in G(\lambda)$.

Define a sequence of points $\tau_n = x_n + iy_n$ inductively as follows: apply T_2 and T_3, if necessary, to move γ horizontally to a point τ_1 in the strip $E_\lambda = \{ \tau \in H: -\lambda/2 \leq \Re \tau \leq 0 \}$. Given $\tau_n (n \geq 1)$, apply T_2 and T_3 to move $T_1 \tau_n$ horizontally to a point $\tau_{n+1} \in E_\lambda$. We will assume that $| \tau_n | < 1$ for each n, otherwise the theorem is proved. Thus, $y_{n+1} = y_n / | \tau_n | ^2 > y_n$. Let w be a cluster point of $\{ \tau_n \}$. Note $\Im w > 0$. If $| w | < 1$, then $\{ \tau_n \}$ has an infinite subsequence $\{ \tau_{n_k} \}$ such that $| \tau_{n_k} | \leq c < 1$, so that $y_{n_k} \geq y_n / c^{2(k-1)} \to \infty$ as $k \to \infty$, a contradiction. Hence, $| w | = 1$. When $\lambda < 2$, let v denote the point of intersection between the unit circle and the line $\Re \tau = -\lambda/2$. We will assume that $\lambda < 2$ and that $w = v$ is the unique cluster point of $\{ \tau_n \}$, otherwise $T_1 \tau_n \in B(\lambda)$ for some large n. If $\arg \tau_n \leq \arg v$ for some n, then $\Im \tau_{n+1} > \Im v$, contradicting the fact that $y_{n+1} > y_n$. Let $n \geq N$. Note that $x_n < 0$, since $x_{n+1} = -\lambda - x_n / (x_n ^2 + y_n ^2)$. Let $n \geq N$. Letting $\pi \theta = \pi - \arg v$ (so that $\lambda = 2 \cos \pi \theta$), we have

$$x_{n+1} - x_n = \frac{1}{x_n} \left(-\lambda x_n - x_n ^2 + y_n ^2 - x_n ^2 \right) = -\frac{1}{x_n} \left(\lambda x_n + \cos ^2 (\arg \tau_n) + x_n ^2 \right) > -\frac{1}{x_n} \left(\lambda x_n + \cos ^2 (\arg v) + x_n ^2 \right) = -\frac{1}{x_n} \left(\lambda x_n + \cos \pi \theta ^2 \right) \geq 0.$$

Thus, $x_{n+1} > x_n$ for each $n \geq N$, which contradicts the fact that $x_n \to \Re v$.

Thus, $B(\lambda)$ is a fundamental region for $G(\lambda)$ if and only if no two distinct points of $B(\lambda)$ are $G(\lambda)$-equivalent. We now show this is the case when $\lambda \geq 2$ or $\lambda \in C$.

Theorem 2. When $\lambda \geq 2$, no two distinct points of $B(\lambda)$ are $G(\lambda)$-equivalent.

Proof. Choose $V \neq I$ (I is the identity) in $G(\lambda)$ and $\tau \in B(\lambda)$. We will show that $V \tau \notin B(\lambda)$. We can write V in the form $V = S_k ^{r} S_{k-1} ^{r-1} \cdots S_0 ^{r} T S_k ^{r}$, where $r \geq 1$, each $k_i \in Z$, and $k_i \neq 0$ if $2 \leq i \leq r - 1$. Let $\tau_1 = \cdots$
\(TS_3^{k_1} TS_3^{k_2-1} \cdots TS_3^{k_r} \tau \). It is easily seen that \(| \tau_i | < 1 \) for \(1 \leq i \leq r - 1 \). Thus, \(V_\tau = S_3^{k_r} \tau_1 \notin B(\lambda) \).

In order to handle the case \(\lambda \in C \), we shall need two lemmas. Whenever \(\lambda \in C \), we shall write \(\lambda = 2 \cos(\pi/q) \), where \(q \in \mathbb{Z}, q \geq 3 \).

Lemma 1. When \(\lambda \in C \), no two points of \(B(\lambda) \) are equivalent under a nonidentity transformation in \(\langle T_1, T_3 \rangle \).

Proof. If the lemma is false, then there exist points \(\tau, \tau' \in B(\lambda) \) with, say, \(\Im \tau' \geq \Im \tau \) and a word \(V \neq I \) in \(\langle T_1, T_3 \rangle \) such that \(V \tau = \tau' \). Note \(V \neq T_3 \), as \(T_3 \notin B(\lambda) \). Hence, as \(T_1 \) and \(T_3 \) have order 2, \(V \) can have either the form \(T_3^\alpha (T_1 T_3)^n \) or \(T_3^\alpha (T_3 T_1)^n \), where \(n \in \mathbb{Z}, n \neq 0 \), and \(\alpha = 0 \) or 1. If \(V \) has the latter form, then \(V = T_3^\alpha (T_1 T_3)^{-n} \) because \(T_3 T_1 = (T_1 T_3)^{-1} \). Thus, in any case \(V \) has the former form. Now for all \(n \in \mathbb{Z} \), \((T_1 T_3)^n \) is the linear fractional transformation with matrix

\[
\begin{pmatrix}
\frac{a_n}{c_n} & \frac{b_n}{d_n}
\end{pmatrix} = \frac{1}{\sin \pi \theta} \begin{pmatrix}
\sin \pi \theta(1 - n) & -\sin \pi \theta n \\
\sin \pi \theta n & \sin \pi \theta(n + 1)
\end{pmatrix}
\]

Since \((T_1 T_3)^n = I \), we may write \(V = T_3^\alpha (T_1 T_3)^n \), where \(\alpha = 0 \) or 1, \(n \in \mathbb{Z} \), \(1 \leq n \leq q - 1 \). Write \(\tau = x + iy \). As \(c_n d_n \geq 0 \), we have

\[
|c_n \tau + d_n|^2 = c_n^2 |\tau|^2 + d_n^2 + 2c_n d_n x > c_n^2 + d_n^2 - \lambda c_n d_n = 1,
\]

so that

\[
\Im \tau' = \Im(T_1 T_3)^n \tau = \frac{y}{|c_n \tau + d_n|^2} < y = \Im \tau,
\]
a contradiction.

Lemma 2. Let \(\lambda \in C \), let \(x + iy = \tau \in H \), and let \(W \in \langle T_1, T_3 \rangle \), \(W \neq I \), \(W \neq T_1 \). If either

(i) \(\Re \tau > 0 \)

or

(ii) \(\tau \in B(\lambda) \),

then \(\Re W \tau < 0 \).

Proof. We can write \(W \) in the form \(W = T_3^\alpha (T_1 T_3)^n \), where \(\alpha = 0 \) or 1, \(n \in \mathbb{Z}, 1 \leq n \leq q - 1 \). To show that \(\Re W \tau < 0 \), it suffices to show that \(\Re(T_1 T_3)^n \tau < 0 \). We have (in the notation of the previous lemma)

\[
\Re(T_1 T_3)^n \tau = \frac{(a_n x + b_n)(c_n x + d_n) + a_n c_n y^2}{|c_n \tau + d_n|^2}.
\]
Note that \(a_n \leq 0\), \(b_n \leq 0\), \(c_n \geq 0\), and \(d_n \geq 0\). Hence, if (i) holds, \(a_n c_n y^2 \leq 0\) and \((a_n^2 + b_n)(c_n^2 + d_n) < 0\), so \(\text{Re}(T_1 T_3) \tau < 0\). If (ii) holds, then

\[
\text{Re}(T_1 T_3) \tau = \frac{b_n d_n + a_n c_n |\tau|^2 + (a_n d_n + b_n c_n) x}{c_n \tau + d_n |\tau|^2}
\]

\[
= \frac{b_n d_n + a_n c_n + (a_n d_n + b_n c_n)(-\lambda/2)}{c_n \tau + d_n |\tau|^2}
\]

\[
= \frac{-\cos(\pi/\lambda)}{c_n \tau + d_n |\tau|^2} < 0.
\]

Theorem 3. If \(\lambda \in \mathbb{C}\), no two distinct points of \(B(\lambda)\) are \(G(\lambda)\)-equivalent.

Proof. It suffices to show that no two points of \(B(\lambda)\) are equivalent under a transformation \(V \in \langle T_1, T_2, T_3 \rangle\), where \(V \neq T_1, V \neq T_2\). If the contrary is true, choose a word \(v\) for \(V\) in \(\langle T_1, T_2, T_3 \rangle\) of minimal length \(L\) for which \(V \neq T_2, V \neq T_1\), and there exists \(\tau \in B(\lambda)\) such that \(V \tau \in B(\lambda)\). By Lemma 1, such a word must contain \(T_2\). No word for \(V\) of length \(L\) can begin or end with \(T_2\). For if \(V = T_2 Y\), then \(Y \neq T_2, Y \neq T_1, Y \neq T_3\), and \(Y \tau \in B(\lambda)\), which contradicts the minimality of \(L\); similarly, if \(V = YT_2\), then \(Y \neq T_2, Y \neq T_1, Y \neq T_3\), and \(Y(T_2 \tau) \in B(\lambda)\), a contradiction. Thus, \(v = W_1 T_2 W_3 T_2 \cdots W_k T_2 W_{k+1} (k \geq 1)\), where \(I \neq W_i \in \langle T_1, T_3 \rangle\) for each \(i\). Moreover, for each \(i\), \(W_i \neq T_1\). For if \(W_i = T_1\) or \(W_{k+1} = T_1\), then \(T_1 T_2 = T_2 T_1\), \(V\) would equal a word of length \(L\) which begins or ends with \(T_2\); if \(W_i = T_1\) for some \(i\) such that \(2 \leq i \leq k\), then since \(T_2 T_1 = T_1, V\) would equal a word of length smaller than \(L\).

Let \(\tau_i = T_2 W_i T_2 W_{i+1} \cdots T_2 W_{k+1} \tau\). We will show by induction on \(i\) that \(\text{Re} \tau_i < 0\), \((2 \leq i \leq k + 1)\). Since \(V \tau \in B(\lambda)\), \(\text{Re} \tau_2 \neq \text{Re} W_{k+1}^{-1} \tau < 0\) by Lemma 2. Assume \(\text{Re} \tau_m < 0\) for an \(m\) such that \(2 \leq m \leq k\). Then \(\text{Re} T_2 \tau_m > 0\), so by Lemma 2, \(\text{Re} \tau_{m+1} \neq \text{Re} W_m^{-1} T_2 \tau_m < 0\), completing the induction. As \(\tau \in B(\lambda)\), \(\text{Re} W_{k+1} \tau < 0\) by Lemma 2. Hence, \(\text{Re} \tau_{k+1} = \text{Re} T_2 W_{k+1} \tau > 0\), a contradiction.

We now investigate the distribution of \(G(\lambda)\)-equivalent points in \(H\) when \(0 < \lambda < 2, \lambda \notin \mathbb{C}\).

Lemma 3. Let

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]

be the matrix of the linear fractional transformation \(W \in G(\lambda)\). Then \(W\) has a fixed point in \(H\) if and only if \(|a + d| < 2\).
Proof. \(W\tau = \tau \) if and only if \(\tau = (a - d \pm \sqrt{(d + a)^2 - 4})/2c \).

Lemma 4. Suppose \(W \in G(\lambda) \) has infinite order and \(W \) has a fixed point \(\tau_1 \in H \). Let \(t(\tau) = (\tau - \tau_1)/(\tau - \bar{\tau}_1) \), where \(\bar{\tau}_1 \) is the complex conjugate of \(\tau_1 \). Then for each \(\tau \in H - \{\tau_1\} \), the set \(J_\tau = \{W^n\tau : n \in \mathbb{Z}\} \) is dense on the circle \(K_\tau = \{\sigma : |t(\sigma)| = |t(\tau)|\} \).

Proof. Let
\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]
be the matrix of \(W \). Note that \(\rho = c\tau_1 + d \) is the characteristic value of
\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]
corresponding to the characteristic vector \(\{\tau_1\} \).

Since \(\rho \) and \(\bar{\rho} \) are the roots of the characteristic equation
\[
x^2 - (a + d)x + 1 = 0,
\]
we have \(\rho \bar{\rho} = 1 \). Now for any \(\tau \),
\[
t(W\tau) = (W\tau - W\tau_1)/(W\tau - W\bar{\tau}_1)
\]
since \(\tau_1 \) and \(\bar{\tau}_1 \) are fixed by \(W \). Thus,
\[
t(W\tau) = \frac{\tau - \tau_1}{(c\tau + d)(c\tau_1 + d)} = \frac{\bar{\rho}}{\rho} t(\tau) = \rho^{-n} t(\tau).
\]
Thus, for all \(n \in \mathbb{Z} \), \(t(W^n\tau) = \rho^{-n} t(\tau) \). Since \(\tau_1 \) is nonreal and \(W \) has infinite order,
\[
\begin{pmatrix}
\tau_1 \\
1
\end{pmatrix} \neq \begin{pmatrix}
a & b \\
c & d
\end{pmatrix}^n \begin{pmatrix}
\tau_1 \\
1
\end{pmatrix} - \rho^n \begin{pmatrix}
\tau_1 \\
1
\end{pmatrix}, \text{ for each } n \geq 1.
\]
Otherwise, writing
\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}^n = \begin{pmatrix}
a^{(n)} & b^{(n)} \\
c^{(n)} & d^{(n)}
\end{pmatrix},
\]
we would have \((a^{(n)} - 1)\tau_1 = -b^{(n)} \) and \(c^{(n)}\tau_1 = 1 - d^{(n)} \), so that \(a^{(n)} = d^{(n)} = 1 \) and \(b^{(n)} = c^{(n)} = 0 \), a contradiction.

Therefore, \(\rho \) is not a root of unity, and, consequently, \(\{t(W^n\tau) : n \in \mathbb{Z}\} \) is dense on the circle \(\{z : |z| = |t(\tau)|\} \). Thus, \(J_\tau \) is dense on \(K_\tau \).

Lemma 5. If \(0 < \lambda < 2, \lambda \notin C \), then there exists a \(W \in G(\lambda) \) such that \(W \) has infinite order and \(W \) has a fixed point in \(H \).
Proof. Case 1. \(\theta \) is irrational. Choose \(W = TS_\lambda \) so that \(W \) has matrix

\[
\begin{pmatrix}
 a_1 & b_1 \\
 c_1 & d_1
\end{pmatrix}
\]

(in the notation of the proof of Lemma 1). By Lemma 3, \(W \) has a fixed point in \(H \). Since \(\theta \) is irrational, \(c_n \neq 0 \) for all \(n \geq 1 \). Thus \(W \) has infinite order.

Case 2. \(\theta = p/q \), \((p, q) = 1 \), \(2 \leq p < q/2 \). Choose \(W = T(TS_\lambda)^k \), where \(kp \equiv 1 \pmod{q} \). Note that \(W \) has matrix

\[
\begin{pmatrix}
 -c_k & -d_k \\
 a_k & b_k
\end{pmatrix} = \begin{pmatrix}
 -c_k & -d_k \\
 a_k & c_k
\end{pmatrix}.
\]

Since

\[
|c_k| = \left| \frac{\sin(\pi pk/q)}{\sin(\pi p/q)} \right| = \frac{\sin(\pi/q)}{\sin(\pi p/q)} < 1,
\]

\(W \) has a fixed point by Lemma 3.

To show that \(W \) has infinite order, we will show that

\[
\begin{pmatrix}
 -c_k & -d_k \\
 a_k & -c_k
\end{pmatrix}
\]

has a characteristic value \(\rho \) which is not a root of unity. Let \(c_k' \) be any algebraic conjugate of \(c_k \). Since \(\rho \) satisfies the characteristic equation \(x^2 + 2c_k'x + 1 = 0 \), a root \(\rho' \) of \(x^2 + 2c_k'x + 1 = 0 \) is a conjugate of \(\rho \).

When \((j, 2q) = 1 \), \((\sin(\pi pk/j))((\sin(\pi p/j)) \) is a conjugate of \(c_k \). If we let \(c_k' = (\sin(\pi pk/j)/\sin(\pi p/j)) \), where \(j \) is odd and \(jp \equiv 1 \pmod{q} \), then \(|c_k'| = |(\sin(\pi k/j))/\sin(\pi p/j)| \geq 1 \). Thus, \(\rho' \) is real. Now suppose \(\rho \) is a root of unity. Then so is \(\rho' \), so \(\rho' = \pm 1 \). Thus, \(\rho = \pm 1 \), which contradicts \(|c_k| < 1 \). Thus, \(\rho \) is not a root of unity.

It follows from Lemmas 4 and 5 that \(G(\lambda) \) is not discontinuous when \(0 < \lambda < 2 \), \(\lambda \notin C \). We can prove a bit more.

Theorem 4. Let \(A(\tau) \) be the set of points which are \(G(\lambda) \)-equivalent to \(\tau \). If \(0 < \lambda < 2 \), \(\lambda \notin C \), then for each \(\tau \in H \), \(A(\tau) \) is dense in \(H \).

Proof. By Lemma 5, we can find a \(W \in G(\lambda) \) such that \(W \) has infinite order and \(W \) has a fixed point \(\tau_1 \in H \). Define \(t(\tau) = (\tau - \tau_1)(\tau - \tau_2) \) as before. Assume there is a \(\tau \in H \) for which \(A(\tau) \) is not dense in \(H \). Then there is an open disk \(N \subset H - \{\tau_1\} \) such that \(N \cap A(\tau) = \emptyset \). If \(\sigma \in K_\alpha \cap A(\tau) \) for some \(\alpha \in N \), then \(N \) would contain a point in \(J_\sigma \) by Lemma 4, a contra-
diction. Thus, \(K_\alpha \cap A(\tau) = \emptyset \), for each \(\alpha \in \mathbb{N} \). We can, therefore, find \(e_1 \) and \(e_2 \) such that

\[
\{ \sigma \in A(\tau) : e_1 < |t(\sigma)| < e_2 \} = \emptyset.
\]

Let \(e_3 \) be the largest number for which \(\{ \sigma \in A(\tau) : e_1 < |t(\sigma)| < e_3 \} = \emptyset \). Note \(e_3 < 1 \), since \(|t(S_m \tau)| \to 1 \), as \(m \to \infty \). Define \(\beta \) to be the point with the largest real part satisfying \(|t(\beta)| = e_3 \). Note that \(\beta \) is the rightmost point on \(K_\beta \). The circles \(K_\beta \) and \(S_\lambda^{-1}K_{\beta+\lambda} \) intersect at \(\beta \) but they are not tangent because the center of \(S_\lambda^{-1}K_{\beta+\lambda} \) is higher than the center of \(K_\beta \). (The center of \(K_\beta \) is \((x_1, y_1) = [(2/(1 - e_3^2)) - 1] \) and the center of \(K_{\beta+\lambda} \) is \((x_1, y_1) = [(2/(1 - e_4^2)) - 1] \), where \(x_1 = x_1 + iy_1 \) and \(e_3 < e_4 = |t(\beta + \lambda)| < 1 \). By definition of \(e_3 \), there are points of \(A(\tau) \) arbitrarily close to \(K_\beta \). Hence, there are circles \(K_\lambda(\nu \in A(\tau)) \) in any small annulus containing \(K_\beta \). Lemma 4, thus, shows that \(\beta \) is a cluster point of \(A(\tau) \). Choose \(\mu \in A(\tau) \) so close to \(\beta \) that \(K_\beta \) and \(S_\lambda^{-1}K_{\mu+\lambda} \) intersect but are not tangent. Then there are points of \(S_\lambda^{-1}J_{\mu+\lambda} \) in \(\{ \sigma : e_1 < |t(\sigma)| < e_3 \} \), a contradiction.

We conclude with some remarks concerning the distribution of \(G(\lambda) \)-fixed points in \(H \). A \(G(\lambda) \)-fixed point is a point in \(H \) fixed by some non-identity element of \(G(\lambda) \). When \(\lambda \geq 2 \) or \(\lambda \in C \), it is clear that \(B(\lambda) \) contains no \(G(\lambda) \)-fixed points. (For suppose \(V \tau = \tau \), where \(V \in G(\lambda) \), \(\tau \in B(\lambda) \). As \(V \) is continuous at \(\tau \), \(V \) maps a neighborhood \(N \) of \(\tau \) into \(B(\lambda) \). As no two distinct points of \(B(\lambda) \) are \(G(\lambda) \)-equivalent, \(V \) acts as the identity on \(N \). By the identity theorem, \(V = I \).)

The following corollary shows that the situation is quite different when \(0 < \lambda < 2 \), \(\lambda \notin C \).

Corollary. If \(0 < \lambda < 2 \), \(\lambda \notin C \), then the set \(F \) of \(G(\lambda) \)-fixed points is dense in \(H \).

Proof. Let \(\tau \in A(i) \), so that \(\tau = Vi \) for some \(V \in G(\lambda) \). Then \(VTV^{-1}\tau = \tau \), so \(\tau \in F \). Thus, \(A(i) \subset F \) and since \(A(i) \) is dense in \(H \) by Theorem 4, \(F \) is dense in \(H \).

Acknowledgments

I wish to thank Professors P. T. Bateman, Bruce Berndt, and Joseph Lehner for their valuable ideas and suggestions.
REFERENCES