Keeler’s Theorem and Products of Distinct Transpositions

Ron Evans, Lihua Huang, and Tuan Nguyen

Abstract. An episode of the television series Futurama features a two-body mind-switching machine, which will not work more than once on the same pair of bodies. After the Futurama community engages in a mind-switching spree, the question is asked, “Can the switching be undone so as to restore all minds to their original bodies?” Ken Keeler found an algorithm that undoes any mind-scrambling permutation with the aid of two “outsiders.” We refine Keeler’s result by providing a more efficient algorithm that uses the smallest possible number of switches. We also present best possible algorithms for undoing two natural sequences of switches, each sequence effecting a cyclic mind-scrambling permutation in the symmetric group S_n. Finally, we give necessary and sufficient conditions on m and n for the identity permutation to be expressible as a product of m distinct transpositions in S_n.

1. INTRODUCTION. “The Prisoner of Benda” [13], an acclaimed episode of the animated television series Futurama, features a two-body mind-switching machine. Any pair can enter the machine to swap minds, but there is one serious limitation: The machine will not work more than once on the same pair of bodies.

After the Futurama community indulges in a mind-switching frenzy, the question is raised: “Can the switching be undone so as to restore all minds to their original bodies?” The show provides an answer using what is known in the popular culture as “Keeler’s theorem” [5]. The theorem is the brainchild of the show’s writer Ken Keeler [8], who earned a Ph.D. in applied mathematics from Harvard University in 1990 [10] before becoming a television writer/producer. For “The Prisoner of Benda,” Keeler garnered a 2011 Writers Guild Award [14].

The problem of undoing the switching can be modeled in terms of group theory. Represent the bodies involved in the switching frenzy by \{1, 2, \ldots, n\}. The symmetric group S_n consists of the $n!$ permutations of \{1, 2, \ldots, n\}. Let I denote the identity permutation. A 2-cycle (ab) is called a transposition; it represents the permutation that switches the minds of bodies a and b. The k-cycle $(a_1 \ldots a_k)$ is the permutation that sends a_1’s mind to a_2, a_2’s mind to a_3, \ldots, and a_k’s mind to a_1. Following the convention in [1], we compute products (i.e., compositions) in S_n from right to left. For example, $(123) = (12)(23) = (13)(12) = (23)(13)$.

The successive swapping of minds during the switching frenzy can be represented by a product P of distinct transpositions in S_n. (The transpositions must be distinct due to the limitation of the machine.) In addition to viewing P formally as a product, we can also view P as a permutation. It will be assumed that this permutation is nontrivial; otherwise, nothing needs to be undone. For an example of P, suppose that 2 switches minds with 3 and then 2 switches minds with 1; this corresponds to the product $P = (12)(23)$, yielding the mind-scrambling permutation $P = (123)$.

To restore all minds to their original bodies, we must find a product σ of distinct transpositions such that the permutation σP equals I, and such that the transposition factors in the product σ are distinct from those in the product P. Such a σ is said to

http://dx.doi.org/10.4169/amer.math.monthly.121.02.136

MSC: Primary 20B30, Secondary 05C25

© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121]
undo P. From now on, the phrase “transposition factors” will be shortened simply to “factors”.

In the aftermath of a switching frenzy, the community may have no recollection of the sequence of switches that had taken place. It is then expedient to find a product σ that is guaranteed to undo the mind-scrambling permutation $P \in S_n$ regardless of which sequence of transpositions in S_n had effected P. Keeler’s theorem explicitly produces such a product $\sigma \in S_{n+2}$. Each factor in Keeler’s σ contains at least one entry in the set $\{x, y\}$, where

$$x := n + 1 \quad \text{and} \quad y := n + 2;$$

hence the factors in σ are distinct from whatever transpositions had effected P. We can view x and y as altruistic outsiders who had never entered the machine during the frenzy, but who are subsequently willing to endure frequent mind switches in order to help others restore their minds to their original bodies.

Viewed as a permutation, P can be expressed (uniquely up to ordering) as the product $P = C_1 \cdots C_r$ of nontrivial disjoint cycles C_1, \ldots, C_r in S_n [1, p. 77]. For each $i = 1, \ldots, r$, let k_i denote the length of cycle C_i. While discussing Keeler’s theorem and our refinement (Theorem 1), we will assume that $k_1 + \cdots + k_r = n$. This presents no loss of generality, since if $k_1 + \cdots + k_r = m < n$, then we could relabel the bodies and mimic the arguments using m in place of n.

We now describe Keeler’s method for constructing a product $\sigma \in S_{n+2}$ that undoes $P = C_1 \cdots C_r$. For convenience of notation, write $k = k_1$, so that C_1 is a k-cycle $(a_1 \cdots a_k)$ with each $a_i \in \{1, 2, \ldots, n\}$. It is easily checked that $\sigma_1 C_1 = (xy)$, where σ_1 is the product of $k + 2$ transpositions given by

$$\sigma_1 = (xa_1)(xa_2) \cdots (xa_{k-1}) \cdot (ya_k)(xa_k)(ya_1). \quad (1)$$

For each C_i, define analogous products σ_i of $k_i + 2$ transpositions satisfying

$$\sigma_i C_i = (xy) \quad \text{for} \quad i = 1, \ldots, r.$$

Note that every factor of σ_i has the form (xu) or (yu) for some entry u in C_i. Since disjoint cycles commute, (xy) commutes with every transposition in S_n, so $\tau := \sigma_r \cdots \sigma_2 \sigma_1$ is a product of distinct transpositions for which $\tau P = (xy)$. Taking

$$\sigma = \begin{cases}
(xy)\tau, & \text{if } r \text{ is odd} \\
\tau, & \text{if } r \text{ is even},
\end{cases} \quad (2)$$

we find that σ undoes P and σ is a product of distinct transpositions in S_{n+2}, each containing at least one entry in $\{x, y\}$, as desired.

By (1) and (2), the number of factors in Keeler’s σ is either $n + 2r + 1$ or $n + 2r$, according to whether r is odd or even. In Theorem 1 of the next section, we refine Keeler’s method by showing that P can be undone via a product of only $n + r + 2$ distinct transpositions, each containing at least one entry in $\{x, y\}$. We show, moreover, that this result is best possible in the sense that $n + r + 2$ cannot be replaced by a smaller number. Thus, Keeler’s algorithm is optimal for $r = 1$ and $r = 2$, but for no other r.

With the aim of finding interesting classes of products that can be undone using fewer than two outsiders, we examined what are undoubtedly the two most natural

February 2014] KEELER’S THEOREM. PRODUCTS OF DISTINCT TRANSPOSITIONS 137
products P in S_n effecting the cycle $(12 \ldots n)$, namely [1, p. 81]

$$P_1 = (12)(23)(34) \cdots (n - 1, n) \quad \text{and} \quad P_2 = (n - 1, n) \cdots (3n)(2n)(1n).$$

Theorems 2 and 3 determine how many outsiders and how many mind switches are necessary and sufficient to undo each of these two products. Theorem 2 shows that for $n \geq 5$, P_1 can be undone without any outsiders, using only $n + 1$ switches, where $n + 1$ is best possible. Theorem 3 shows that for $n \geq 3$, P_2 can be undone using only one outsider, again with $n + 1$ switches, where $n + 1$ is best possible.

Suppose for the moment that $n \geq 5$. While P_1 and P_2 can both be undone with fewer than two outsiders, there are other products $P_3(n)$ in S_n effecting $(12 \ldots n)$ for which two outsiders are required to undo $P_3(n)$. For an example with $n = 5$, let

Note that all ten transpositions in S_5 are factors of $P_3(5)$. Suppose, for the purpose of contradiction, that $P_3(5)$ can be undone by a product σ in S_5, i.e., with just one outsider. Every entry in $P_3(5)$ must appear in σ, so σ must be a product of the five factors $(61), (62), (63), (64), (65)$ in some order. The permutation σ thus fails to fix the entry 6, which yields the contradiction $\sigma P_3(5) \neq I$. The argument for $n = 5$ works the same way for all $n \geq 5$ of the form $4k + 1$ or $4k + 2$. Simply take $P_3(n) := P_2 J$, where P_2 is defined in Theorem 3, and J is the identity formulated as a product of all $^{n-1}_2$ transpositions in S_{n-1}, as in Theorem 4. We omit the argument for n of the form $4k$ or $4k + 3$, as it’s a bit more involved.

The products P_1 and P_2 each have the property that no two consecutive factors are disjoint. In contrast, consider the product of m disjoint factors

$$P(m) := (12)(34) \cdots (2m - 1, 2m).$$

We call $P(m)$ the Stargate switch because $P(2)$ represents a sequence of mind swaps featured in an episode of the sci-fi television series Stargate SG-1 [4]. The first and second authors [3] have given an optimal algorithm for undoing $P(m)$; for $m > 1$, the algorithm requires no outsiders.

When $n \geq 5$, Theorem 2 provides equalities of the form $\sigma P_1 = I$, which express the identity I as a product of $2n$ distinct transpositions in S_n. Such equalities lead to the question: What are necessary and sufficient conditions on m and n for I to be expressible as a product of m distinct transpositions in S_n? Theorem 4 provides the answer. It is necessary and sufficient that m be an even integer with $6 \leq m \leq \binom{n}{2}$.

In order to prove Theorems 2–4, we require some properties of cycles proved via graph theory in Lemma 1. The proof of Lemma 1(c) incorporates an idea of Jacques Verstraete in a proof due to Isaacs [7]. We are grateful for their permission to include it here, as our original proof was considerably less elegant.

We will also need the well-known “Parity theorem,” which shows that the identity permutation I cannot equal a product of an odd number of transpositions. Two proofs of the Parity theorem may be found in [1, pp. 82, 149]; for an elegant recent proof, see Oliver [12].

2. AN OPTIMAL REFINEMENT OF KEELER’S METHOD. Keeler’s algorithm was designed to undo every mind-scrambling permutation $P = C_1 \cdots C_r$ that is effected by an unknown sequence of mind swaps. In this section, we present another such algorithm. While Keeler’s algorithm is optimal only for $r \leq 2$, we prove that our algorithm is optimal for all r.

138 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
Theorem 1. Let $P = C_1 \cdots C_r$ be a product of r disjoint k_i-cycles C_i in S_n, with $k_i \geq 2$ and $n = k_1 + \cdots + k_r$. Define $x = n + 1$ and $y = n + 2$. Then P can be undone by a product λ of $n + r + 2$ distinct transpositions in S_{n+2}, each containing at least one entry in $\{x, y\}$. Moreover, this result is best possible in the sense that $n + r + 2$ cannot be replaced by a smaller number.

Proof. Write $k = k_1$, so that C_1 is a k-cycle $(a_1 \ldots a_k)$. Corresponding to the cycle C_1, define

$$G_1(x) = (a_1x)(a_2x) \cdots (a_kx) \quad \text{and} \quad F_1(x) = (a_1x).$$

Corresponding to each cycle C_i for $i = 1, \ldots, r$, define $G_i(x)$ and $F_i(x)$ analogously. Set

$$\lambda = (xy) \cdot G_r(x) \cdots G_2(x) \cdot (a_kx)G_1(y)(a_1x) \cdot F_2(y) \cdots F_r(y).$$

It is readily checked that λ undoes P and that λ is a product of $n + r + 2$ distinct transpositions in S_{n+2}, each containing at least one entry in $\{x, y\}$.

It remains to prove optimality. Suppose, for the purpose of contradiction, that P can be undone by a product σ of $t < n + r + 2$ distinct transpositions in S_{n+2}, each containing at least one entry in $\{x, y\}$. Then by the Parity theorem, $t \leq n + r$.

On the other hand, we have the lower bound $t \geq n$, since each of the n entries in P must occur (coupled with x or y) in a factor of σ. Let A denote the set of entries in $C_1 = (a_1 \ldots a_k)$, and let a denote the rightmost element of A appearing in the product σ. Since P maps a to some other element of A, it follows that a appears twice in σ, i.e., σ has both of the factors (ax) and (ay). The same argument shows that each of the r cycles C_i contains an entry that appears twice in σ. Thus, the inequality $t \geq n$ can be strengthened to $t \geq n + r$. Consequently, $t = n + r$. It follows that each of the r cycles C_i contains exactly one entry that appears twice in σ, and the other $n - r$ entries appear only once. This accounts for all $n + r$ factors of σ, so in particular, (xy) cannot be a factor of σ.

Let a' denote the leftmost element of A appearing in the product σ. Since P maps some element of A to a', it follows that a' appears twice in σ. Since a is the only element of A that appears twice in σ, we must have $a = a'$. Consequently, we have shown the following two properties of C_1:

(i) there is a unique entry a in C_1 for which the transpositions (ax) and (ay) both occur as factors of σ, and

(ii) each entry of C_1 other than a occurs in exactly one factor of σ, and that factor lies strictly between (ax) and (ay).

These two properties are similarly shared by each of the r cycles C_i.

Let N_i denote the number of transpositions in σ that lie strictly between its factors (ax) and (ay). Define N_i similarly for each of the r cycles C_i. We may assume without loss of generality that $N_1 \leq N_i$ for all i. We may also assume that the factor (ax) in σ lies to the left of the factor (ay), and that $a = a_k$.

Let M_y denote the set of factors in σ that contain the entry y and that lie between (a_1x) and (a_ky) inclusive. Suppose, for the purpose of contradiction, that every transposition in M_y has the form (a_iy) for some $a_i \in A$. Since σ must send a_{i+1} to a_i for each $i = 1, \ldots, k - 1$, it follows that the elements of M_y have to occur in the following order in σ:

$$(a_1y), (a_2y), \ldots, (a_{k-1}y), (a_ky).$$
But then σ could not send a_1 to a_k, a contradiction. Thus some transposition in M_y must have the form (hy), where $h \not\in A$. Consider the rightmost $(hy) \in M_y$ with $h \not\in A$. For some fixed $j > 1$, h is an entry of the cycle C_j. Among all the elements $(a_t, y) \in M_y$ that lie to the right of (hy), let (a_{m}, y) denote the one closest to (hy). As σ cannot send a_m to h, it follows that the entry h occurs twice between (a_kx) and (a_ky), i.e., σ has factors (hx) and (hy) both lying strictly between (a_kx) and (a_ky). Thus, $N_j < N_1$. This violates the minimality of N_1, giving us the desired contradiction.

3. A LEMMA ON FACTORIZATION OF CYCLES.

Lemma 1. For $2 \leq k \leq n$, suppose that the k-cycle $(a_1 \ldots a_k) \in S_n$ equals a product P of t transpositions in S_n. Then

(a) $t \geq k - 1$,

(b) when $t = k - 1$, the set of entries in P is $V := \{a_1, \ldots, a_k\}$, and

(c) when $t = k - 1$, at least one factor of P has the form (a_ia_{i+1}) with $1 \leq i < k$.

Proof. Since $(ij)(ab)(ij)$ equals a transposition, a product of nondistinct transpositions reduces to a shorter product of distinct transpositions. Thus, it suffices to prove the result when the factors of P are distinct. Let W denote the set of entries in the product P. Note that W contains the set $V := \{a_1 \ldots a_k\}$. Define a graph G with vertex set W and with t edges $[i, j]$ corresponding to the t transposition factors (ij) of P. Since $P = (a_1 \ldots a_k)$ is a product of these t transpositions, the graph G has a connected component H whose vertex set contains V. A connected graph with M vertices has at least $M - 1$ edges [2, Theorem 11.2.1, p. 163], so H and hence G must have at least $|V| - 1 = k - 1$ edges. Thus $t \geq k - 1$. This proves part (a). (For another proof of part (a), see [6, p. 77]. For a generalization proved via linear algebra, see [9].)

For the rest of this proof, suppose that $t = k - 1$. Then H has t edges, so $G = H$ and G is connected. If V were strictly contained in W, then again by [2, Theorem 11.2.1, p. 163], G would have at least k edges. Thus $V = W$, which proves part (b). (For a generalization of part (b), see [11].)

To prove part (c), it remains to prove that one of the $k - 1$ edges of G has the form $[a_i, a_{i+1}]$ with $1 \leq i < k$. This is clear for $k = 2$, so we let $k \geq 3$ and induct on k. A connected graph with k vertices is a tree if and only if it has $k - 1$ edges [2, Theorem 11.2.1, p. 163]. Thus G is a tree. Let (a_ua_v) denote the rightmost factor of P, with $u < v$. Write $w = v - u$. If $w = 1$, we are done, so assume that $w > 1$. Define the disjoint cycles

$$r = (a_{u+1} \ldots a_v) \quad \text{and} \quad s = (a_1 \ldots a_u, a_{u+1}, \ldots, a_k),$$

so that r is a w-cycle and s is a $(k - w)$-cycle. If $v = k$, then s is interpreted as $(a_1 \ldots a_v)$, which in turn is interpreted as the identity permutation when $u = 1$. Define P' to be the product obtained from P by removing the rightmost factor (a_ua_v). Let G' be the graph obtained from G by removing the edge $[a_u, a_v]$. Then P' has $k - 2$ factors and G' has $k - 2$ edges. Since $P = sr(a_ua_v)$, we have $P' = sr$. It follows that G' is a forest of two trees R and S, where R is a tree on the w vertices a_{u+1}, \ldots, a_v, and S is a tree on the remaining vertices in V. The w-cycle r equals a product Q of the $w - 1$ factors of P corresponding to the $w - 1$ edges of R. Since $w < k$, it follows by induction that Q, and hence P, has a factor of the required form (a_ia_{i+1}). ■
4. OPTIMAL METHODS TO UNDO P_1 AND P_2.

Theorem 2. For $n \geq 5$, let P_1 denote the product of $n - 1$ transpositions in S_n given by $P_1 = (12)(23)(34) \cdots (n - 1, n)$. There exists a product σ of $n + 1$ distinct transpositions in S_n that undoes P_1, and this result is best possible in the sense that no such σ can have fewer than $n + 1$ distinct factors.

Proof. Define

$$\sigma = (3n)(2, n - 1)(1n)(14)(2n)(13) \cdots (3, n - 1),$$

where, when $n = 5$, the empty product $(35) \cdots (3, n - 1)$ is interpreted as the identity.

It is easily checked that $\sigma P_1 = I$ and that σ is a product of $n + 1$ distinct transpositions in S_n, all distinct from the $n - 1$ transpositions in P_1. It remains to prove optimality.

Suppose, for the purpose of contradiction, that there exists a product E of $k < n + 1$ distinct transpositions in S_n for which $EP_1 = I$ and for which the k transpositions in E are distinct from the $n - 1$ transpositions in P_1. Since $EP_1 = I$, the Parity theorem shows that $k \leq n - 1$. On the other hand, since $P_1 = (12 \ldots n)$, Lemma 1(a) gives $k \geq n - 1$. Thus, the number of transpositions in the product E is exactly $n - 1$. Note that E^{-1} is a product of these same $n - 1$ transpositions in reverse order, and $E^{-1} = P_1(12 \ldots n)$. Hence, by Lemma 1(c), one of these $n - 1$ transpositions in E has the form $(i, i + 1)$ with $1 \leq i < n$. This contradicts the distinctness of the factors of E from those in P_1, since by definition P_1 is a product of all $n - 1$ transpositions $(i, i + 1)$ with $1 \leq i < n$.

Theorem 3. For $n \geq 3$, let P_2 denote the product of $n - 1$ transpositions in S_n given by $P_2 = (n, n - 1) \cdots (n3)(n2)(n1)$. There exists a product τ of $n + 1$ distinct transpositions in S_{n+1} that undoes P_2, and this result is best possible in the sense that no such τ can have fewer than $n + 1$ distinct factors.

Proof. Define

$$\tau = (2, n + 1)(3, n + 1)(4, n + 1) \cdots (n, n + 1) \cdot (1, 2)(1, n + 1).$$

It is easily checked that $\tau P_2 = I$ and that τ is a product of $n + 1$ distinct transpositions in S_{n+1}, all distinct from the $n - 1$ transpositions in P_2. It remains to prove optimality.

Suppose, for the purpose of contradiction, that there exists a product F of $k < n + 1$ transpositions in S_{n+1} for which $FP_2 = I$ and for which the k transpositions in F are distinct from the $n - 1$ transpositions in P_2. Since $FP_2 = I$, the Parity theorem shows that $k \leq n - 1$. On the other hand, since $P_2 = (1, 2 \ldots n)$, Lemma 1(a) gives $k \geq n - 1$. Thus, the number of transpositions in the product F is exactly $n - 1$. Note that F^{-1} is a product of these same $n - 1$ transpositions in reverse order, and $F^{-1} = P_2(1, 2, \ldots n)$. Hence, by Lemma 1(b), the entries in these $n - 1$ transpositions all lie in the set $\{1, 2, \ldots n\}$. Since the permutation F moves n, it follows that one of these $n - 1$ transpositions in F has the form (in) with $1 \leq i < n$. This contradicts the distinctness of the factors of F from those in P_2, since by definition, P_2 is a product of all $n - 1$ transpositions (in) with $1 \leq i < n$.

Remark. When $n = 2$, two outsiders are required to undo $P_1 = P_2 = (12)$, and an optimal σ is given by $(34)(23)(14)(24)(13)$. In the cases $n = 3$ and $n = 4$, one
If a product λ transpositions, while noting that f is the product of m distinct transpositions in S_n, it is necessary and sufficient that m be an even integer with $6 \leq m \leq \binom{n}{2}$.

Theorem 4. For the identity I to be expressible as a product of m distinct transpositions in S_n, it is necessary and sufficient that m be an even integer with $6 \leq m \leq \binom{n}{2}$.

Proof. We begin by showing that the conditions are necessary. First, m must be even by the Parity theorem, and it is not hard to show that m cannot equal 2 or 4. Furthermore, m cannot exceed $\binom{n}{2}$, since $\binom{n}{2}$ is the number of distinct transpositions in S_n. This proves necessity, and it remains to show sufficiency.

Define $f(a, b, c) = (ac)(ab)(bc)$, which we view formally as a product of three transpositions, while noting that $f(a, b, c)$ equals (ab) when viewed as a permutation. If a product λ of transpositions has a factor (ab), then formally replacing (ab) by $f(a, b, c)$ increases the number of λ's factors by 2, without altering λ as a permutation.

For even m in the appropriate range, we now show how to express I explicitly as a product of m distinct transpositions in S_4, S_5, S_6, S_7, and S_8. An analogous treatment will then inductively express I as a product of m distinct transpositions in S_{4k}, S_{4k+1}, S_{4k+2}, S_{4k+3}, and S_{4k+4} for all $k \geq 2$, thus completing the proof.

For $m = 6$, we have the base case

This equality uses all six transpositions in S_4, so to consider the values $m = 8, 10$, we move up to S_5. For $m = 8$, replace the first transposition (12) above by $f(1, 2, 5)$ to obtain

For $m = 10$, replace the transposition (34) above by $f(3, 4, 5)$ to obtain

This equality uses all ten transpositions in S_5, so to consider the values $m = 12, 14$, we move up to S_6. For $m = 12$, replace (23) above by $f(2, 3, 6)$ to obtain

For $m = 14$, replace (45) above by $f(4, 5, 6)$ to obtain

This equality uses all of the fifteen transpositions in S_6 except for (16), so to consider the values $m = 16, 18, 20$, we move up to S_7. For $m = 16$, $m = 18$, and $m = 20$, successively replace (12) by $f(1, 2, 7)$, (34) by $f(3, 4, 7)$, and (56) by $f(5, 6, 7)$, respectively. This yields the following for $m = 20$:

\[\times (37)(34)(47)(46)(45)(57)(56)(67) \text{ in } S_7.\]
This equality uses all of the twenty-one transpositions in S_7 except for (16), so to consider the values $m = 22, 24, 26, 28$, we move up to S_8. For $m = 22, m = 24,$ and $m = 26$, successively replace (23) by $f(2, 3, 8), (45)$ by $f(4, 5, 8),$ and (67) by $f(6, 7, 8)$, respectively. This yields the following for $m = 26$:

This equality uses all twenty-eight transpositions in S_8 except (16) and (18). This suggests that we make the atypical replacement of (68) by $f(6, 8, 1)$ to obtain the following for $m = 28$:

This equality uses all twenty-eight transpositions in S_8. From here, we can repeat the procedure.

REFERENCES

RON EVANS received a B.S. from the University of Michigan in 1967 and a Ph.D. from the University of Illinois in 1974. After a two-year instructorship at the University of Wisconsin, he joined the UCSD Mathematics Department in 1975. His recent work focuses on character sum evaluations, with connections to Hecke eigenfunctions. He is coauthor of Gauss and Jacobi Sums (Wiley, 1998) with his Ph.D. advisor Bruce C. Berndt and Kenneth S. Williams. His hobbies include playing the violin, bicycling, and losing to the computer at chess.
Department of Mathematics, University of California at San Diego, La Jolla, CA 92093-0112
revans@ucsd.edu

LIHUA HUANG obtained her B.S. in mathematics from the University of California at San Diego in 2012. Her research interests include group theory and several complex variables. She has given presentations on her

February 2014] KEELER’S THEOREM, PRODUCTS OF DISTINCT TRANSPOSITIONS 143
three research projects at conferences held by Ohio State, Cal Poly Pomona, Penn State, UCSD, and the 2013 Joint Mathematics Meetings in San Diego. She received a GAANN Fellowship at Rutgers University, where she is a second year Ph.D. student in mathematics. Her hobbies include ping-pong, racquetball, and cooking.

Department of Mathematics, University of California at San Diego, La Jolla, CA 92093-0112
Current address: Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019
Thuang@math.rutgers.edu

TUAN NGUYEN graduated from UCSD in 2012 with a B.S. in applied mathematics. He is currently pursuing a master’s degree in statistics at Stanford University with specialization in machine learning, data mining, natural language processing and information retrieval. His hobbies include soccer and tennis.

Department of Mathematics, University of California at San Diego, La Jolla, CA 92093-0112
Current address: Department of Mathematics, Stanford University, Stanford, CA 94305
tylerhnt@stanford.edu

Non-recursive Polynomial Formula for the Sum of the Powers of the Integers

There are recursive formulas for the sum S_n of the pth powers of the first n positive integers. Here we present a non-recursive polynomial formula $P(n)$.

Theorem. If $S_n = 1^p + \cdots + n^p$ (where $n, p \in \mathbb{N}_0$, and $S_0 = 0$), then $S_n = P(n)$, where $P(n)$ is the polynomial $P(n) = \sum_{i=1}^{p+1} S_i Q_i(n)/Q_i(i)$ of degree $\deg P(n) = p + 1$ and $Q_i(n) = \prod_{j \neq i}^p (n-j)$.

Proof. We have $S_n = P(n)$ for $n = 0, \ldots, p + 1$ by definition of $P(n)$ and $Q_i(n)$. So $P(n) = P(n - 1) = n^p$ for the $p + 1$ values $n = 1, \ldots, p + 1$. But $\deg(P(n) - P(n - 1)) = n^p < p + 1$; thus (\ast) $P(n) = P(n - 1) = n^p$. Therefore, $S_n = P(n)$ by induction on n. We have $\deg P(n) = p + 1$, otherwise $\deg(P(n) - P(n - 1)) < p$, contradicting (\ast). ■

Example. We have

\[
1^2 + \cdots + n^2 = \begin{cases}
1^2 (n-0)(n-1)(n-2)(n-3) \\
(1^2+2^2) (n-0)(n-1)(n-2)(n-3) \\
(1^2+2^2+3^2) (n-0)(n-1)(n-2)(n-3)
\end{cases} + \frac{n(n+1)(2n+1)}{6}.
\]

Submitted by Jaime Gaspar*

http://dx.doi.org/10.4169/amer.math.monthly.121.02.144
MSC: Primary 11B37
*At the time of writing: INRIA Paris-Rocquencourt, π², Univ Paris Diderot, Sorbonne Paris Cité, F-78153 Le Chesnay, France; Financially supported by the French Foundation Sciences Mathématiques de Paris. At the time of publication: Universitat Rovira i Virgili, Department of Computer Engineering and Mathematics, Av. Països Catalans 26, E-403007 Tarragona, Catalonia, jaime.gaspar@urv.cat; Centro de Matemática e Aplicações (CMA), FCT, UNL.