Notation: G is a multiplicative group with center $Z(G)$.
S_{n} denotes the group of $n!$ permutations of the symbols $1,2,3, \ldots, n$, and A_{n} denotes its subgroup of even permutations.
D_{n} is the dihedral group generated by R and F, where the rotation R has order n and the flip F has order 2.
Points: \#1, 2, 3, 5a, 5b are worth 16 pts each, \#4 is worth 20 pts.
(1) Prove in detail that the index $\quad\left|\mathrm{S}_{9}: \mathrm{A}_{9}\right|$ equals 2.
(2) List all elements in D_{8} that are conjugate to the flip F in D_{8}. Justify.
(3) Let G be a non-abelian group.

Prove in detail that the quotient group $G / Z(G)$ cannot be cyclic.
(4) Let G be a cyclic group of order 31. Prove in detail that the "squaring map" f is an automorphism of G, where f is defined by $f(g)=g^{2}$ for every element g in G.
(5) Let A and B be subgroups of a group G, with B normal in G.

Let C denote the subgroup $\mathrm{A} \cap \mathrm{B}$.
(a) Prove that C is normal in A .
(b) Prove that the map $\mathrm{f}: \mathrm{AB} \rightarrow \mathrm{A} / \mathrm{C}$ is well-defined, where f is given by $f(a b)=a C$ for all a in A and all b in B.

(6) Extra Credit Problem:

Let $\sigma=(1234)(5678)$ in S_{8} (note σ is the product of two disjoint 4-cycles). How many elements of S_{8} commute with σ ? Justify.

