Directions: Justify all answers. If you appeal to a theorem, show that the hypotheses of that theorem are satisfied.
(1) If F^{\prime} is Riemann integrable on $[a, b]$, prove that $\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)$. (25 pts)

SOLUTION: See Theorem 6.21.
(2) Find the limit of $\left(x+x^{2 / 3}\right)^{1 / 3}-x^{1 / 3}$ as $x \rightarrow \infty$. (20 pts)

SOLUTION: Let f denote the cube root function, and let $y=x+x^{2 / 3}$. By the Mean Value Theorem, $f(y)-f(x)=f^{\prime}(c)(y-x)=\frac{1}{3}(x / c)^{2 / 3}$, with c between x and y. Since $x / y<x / c<x / x$ and $x / y \rightarrow 1$ as $x \rightarrow \infty$, we have $x / c \rightarrow 1$ as $x \rightarrow \infty$, so the desired limit is $1 / 3$.
(3) For the function $f(x)=e^{x} \cos (x)$, write down the Taylor polynomial $P(x)$ of degree 3 expanded about $x=0$. Then show that for $x \in(0,1 / 2)$, $|f(x)-P(x)|<.02$. (25 pts)

SOLUTION: $f(x)=e^{x} \cos (x), f^{\prime}(x)=e^{x}(\cos (x)-\sin (x)), f^{\prime \prime}(x)=$ $-2 e^{x} \sin (x), f^{\prime \prime \prime}(x)=-2 e^{x}(\cos (x)+\sin (x))$, and $f^{\prime \prime \prime \prime}(x)=-4 e^{x} \cos (x)$. Thus $P(x)=1+x-\frac{1}{3} x^{3}$, and by Taylor's Theorem, there exists c between 0 and x such that $|f(x)-P(x)| \leq \frac{4 e^{c} \cos (c) x^{4}}{4!} \leq \sqrt{e} / 96<.02$.
(4) Let $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ for $x \in(0,1)$, where the c_{n} are real. True or False: If the limit of $f(x)$ exists as $x \rightarrow 1$, then $\sum_{n=0}^{\infty} c_{n}$ must converge. (15 pts)

SOLUTION: False-choose $c_{n}=(-1)^{n}$, so $f(x)=1 /(1+x)$.
(5) Let $I=(-1,1)$. Starting with the identity $\sum_{n=0}^{\infty} x^{n}=1 /(1-x)$ for $x \in I$, prove that (A) $\sum_{n=1}^{\infty} n x^{n-1}=1 /(1-x)^{2}$, for $x \in I$; (B) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}=\ln (1+x)$,
for $x \in I$; (C) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\ln (2)$. Give precise statements of all major theorems that you use in your proofs. (35 pts)

SOLUTION: (A) The radius of convergence is 1 . Let $0<c<1$. The series converges uniformly on $[-c, c]$ by Theorem 8.1. Thus term by term differentiation is valid on $[-c, c]$ by Theorem 7.17 (or the simplified version of that theorem involving continuous derivatives). (B) Replace x by $-x$ in the geometric series and integrate term by term from 0 to x. This is valid by Theorem 7.16. (C) Let $x \rightarrow 1$ in (B) and apply Abel's theorem. Abel's theorem may be applied because the left side of (C) converges by the alternating series test.
(6) Give an example of a sequence of functions $\left\{f_{n}\right\}$ on $(0,1)$ satisfying $0 \leq f_{n} \leq f_{n+1} \leq 1$ for all n, such that the sequence converges pointwise but not uniformly to a continuous function on (0,1). (15 pts)

SOLUTION: Take $f_{n}(x)$ to be 1 or 0 according as $0<x \leq \frac{n}{n+1}$ or $\frac{n}{n+1}<x<1$. Then $f_{n} \rightarrow f=1$ pointwise, but not uniformly on $(0,1)$, since $\left|f_{n}\left(\frac{n+1}{n+2}\right)-f\left(\frac{n+1}{n+2}\right)\right|=|0-1|=1$ for all n.
(7) Using partitions, show that the sum of two Riemann-Stieltjes integrable functions on $[0,1]$ is again a Riemann-Stieltjes integrable function on $[0,1]$. (20 pts)

SOLUTION: See Theorem 6.12(a).

