
Math 140B Final 155 points June 12, 2014

Directions: Justify all answers. If you appeal to a theorem, show that the
hypotheses of that theorem are satisfied.

(1) If F ′ is Riemann integrable on [a, b], prove that
∫ b
a
F ′(x)dx = F (b)−F (a).

(25 pts)

SOLUTION: See Theorem 6.21.

(2) Find the limit of (x+ x2/3)1/3 − x1/3 as x→∞. (20 pts)

SOLUTION: Let f denote the cube root function, and let y = x + x2/3.
By the Mean Value Theorem, f(y)− f(x) = f ′(c)(y− x) = 1

3
(x/c)2/3, with c

between x and y. Since x/y < x/c < x/x and x/y → 1 as x → ∞, we have
x/c→ 1 as x→∞, so the desired limit is 1/3.

(3) For the function f(x) = ex cos(x), write down the Taylor polynomial
P (x) of degree 3 expanded about x = 0. Then show that for x ∈ (0, 1/2),
|f(x)− P (x)| < .02. (25 pts)

SOLUTION: f(x) = ex cos(x), f ′(x) = ex(cos(x) − sin(x)), f ′′(x) =
−2ex sin(x), f ′′′(x) = −2ex(cos(x)+sin(x)), and f ′′′′(x) = −4ex cos(x). Thus
P (x) = 1 + x− 1

3
x3, and by Taylor’s Theorem, there exists c between 0 and

x such that |f(x)− P (x)| ≤ 4ec cos(c)x4

4!
≤
√
e/96 < .02.

(4) Let f(x) =
∞∑
n=0

cnx
n for x ∈ (0, 1), where the cn are real. True or False:

If the limit of f(x) exists as x→ 1, then
∞∑
n=0

cn must converge. (15 pts)

SOLUTION: False–choose cn = (−1)n, so f(x) = 1/(1 + x).

(5) Let I = (−1, 1). Starting with the identity
∞∑
n=0

xn = 1/(1− x) for x ∈ I,

prove that (A)
∞∑
n=1

nxn−1 = 1/(1−x)2, for x ∈ I; (B)
∞∑
n=1

(−1)n+1

n
xn = ln(1+x),

1



for x ∈ I; (C)
∞∑
n=1

(−1)n+1

n
= ln(2). Give precise statements of all major

theorems that you use in your proofs. (35 pts)

SOLUTION: (A) The radius of convergence is 1. Let 0 < c < 1. The
series converges uniformly on [−c, c] by Theorem 8.1. Thus term by term
differentiation is valid on [−c, c] by Theorem 7.17 (or the simplified version
of that theorem involving continuous derivatives). (B) Replace x by −x
in the geometric series and integrate term by term from 0 to x. This is
valid by Theorem 7.16. (C) Let x → 1 in (B) and apply Abel’s theorem.
Abel’s theorem may be applied because the left side of (C) converges by the
alternating series test.

(6) Give an example of a sequence of functions {fn} on (0, 1) satisfying
0 ≤ fn ≤ fn+1 ≤ 1 for all n, such that the sequence converges pointwise but
not uniformly to a continuous function on (0, 1). (15 pts)

SOLUTION: Take fn(x) to be 1 or 0 according as 0 < x ≤ n
n+1

or
n
n+1

< x < 1. Then fn → f = 1 pointwise, but not uniformly on (0, 1), since

|fn(n+1
n+2

)− f(n+1
n+2

)| = |0− 1| = 1 for all n.

(7) Using partitions, show that the sum of two Riemann-Stieltjes integrable
functions on [0, 1] is again a Riemann-Stieltjes integrable function on [0, 1].
(20 pts)

SOLUTION: See Theorem 6.12(a).


