Math 140B Test $1 \quad 100$ points April 25, 2014
Directions: Justify all answers. No calculators. If you appeal to a theorem, show that the hypotheses of that theorem are satisfied. As usual, \mathbb{R} and \mathbb{C} denote the reals and the complexes, respectively. Each problem is worth 20 points.
(1) Let X be a metric space disconnected by subsets A and B. Prove that X fails to be arcwise connected. Hint: Choose $p \in A$ and $q \in B$.

SOLUTION: Suppose for the purpose of contradiction that X were arcwise connected. Then there would be a continuous function $f:[0,1] \rightarrow X$ with $f(0)=p \in A$ and $f(1)=q \in B$. Let u be the sup of the set $\{t: f([0, t]) \subset A\}$. Then by continuity of f, either $f(u) \in A$ or $f(u)$ is a limit point of A. In either case, $f(u) \in A$ because A is closed. Similarly, $f(u) \in B$. Thus A and B are not disjoint, a contradiction.
(2) Define $g(x)=\cos (x)-1+\frac{1}{2} x^{2}$ for $x \in(0,1)$. Prove that for all $x \in(0,1)$, we have $0<g(x)<.05$. Hint: Taylor.

SOLUTION: By Taylor's theorem for $f(x)=\cos (x)$ with $n=4$ and $\alpha=0$,

$$
g(x)=\frac{f^{(4)}(c)}{4!} x^{4}=\frac{\cos (c)}{4!} x^{4}
$$

for some $c \in(0, x)$. Since $0<\cos (c)<1$ and $0<x<1$, we have

$$
0<g(x)<\frac{1}{4!}<.05 .
$$

(3) Describe the set of all points $z \in \mathbb{C}$ for which the series $\sum_{n=1}^{\infty} z^{n} / n$ converges.

SOLUTION: By comparison with the geometric series, the given series converges absolutely for all z strictly inside the unit disk centered at the origin. Hence the series converges inside this disk, so the radius of convergence is at least 1 . But the series diverges when $z=1$, so the radius of convergence cannot be larger than 1. Hence the radius of convergence is 1 . For each z on
the unit circle except for $z=1$, the series converges by Theorem 3.42 with $a_{n}=z^{n}$ and $b_{n}=1 / n$.
(4) Define $f(x)=\exp \left(-1 / x^{2}\right)$ for nonzero x, and define $f(0)=0$. Find $f^{\prime}(0)$. Hint: If positive h tends to zero, then $u=1 / h$ tends to infinity.

SOLUTION: We will show that $f^{\prime}(0)=0$. By definition of the derivative at 0 , we need to show that 0 equals the limit of $\frac{\exp \left(-1 / h^{2}\right)}{h}$ as $h \rightarrow 0$. It suffices to show that this limit is 0 as $h \rightarrow 0+$, since the same argument will also show that the limit is 0 as $h \rightarrow 0-$. Let $u=1 / h$. Then the limit in question equals the limit as $u \rightarrow \infty$ of $u \exp \left(-u^{2}\right)$. This is the limit of $\frac{u}{\exp \left(u^{2}\right)}$. Since the denominator approaches ∞ as $u \rightarrow \infty$, L'Hopital's rule applies, and it shows the limit is 0 .
(5) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ have a positive second derivative everywhere on \mathbb{R}. Given also that $f(0)=0$, show that for all $x \geq 0$, we have

$$
x f^{\prime}(x) \geq f(x) \geq x f^{\prime}(0)
$$

SOLUTION: The assertion is true when $x=0$, so assume that $x>0$. Then $\frac{f(x)}{x}=f^{\prime}(c)$ for some $c \in(0, x)$, by the MVT. As $f^{\prime \prime}>0$, we know that f^{\prime} is increasing, again by the MVT. Thus $f^{\prime}(x)>f^{\prime}(c)>f^{\prime}(0)$, which yields the desired result upon multiplication by x.

