Directions: Justify all answers. No calculators. If you appeal to a theorem, show that the hypotheses of that theorem are satisfied. The notation $[x]$ denotes the greatest integer $\leq x$. Each problem is worth 25 points.
(1) Evaluate $\int_{0}^{2} f d \alpha$
(A) when $f(x)=e^{x}, \alpha(x)=e^{x}$;
(B) when $f(x)=e^{x}, \alpha(x)=[x]$.

SOLUTION: (A) This equals the integral from $x=0$ to $x=2$ of $e^{2 x}$, which is $\left(e^{4}-1\right) / 2$.
(B) Since α jumps by 1 at $x=1$ and at $x=2$, the integral equals $f(1)+$ $f(2)=e+e^{2}$.
(2) True or False: The integral $\int_{-1}^{1} f d \alpha$ exists
(A) when $f(x)=\sin (1 / x), \alpha(x)=[x]$;
(B) when $f(x)=\sin (1 / x), \alpha(x)=\sin (x)$.

Justify each True or False answer, using theorems if necessary.

SOLUTION: (A) False. There is a subinterval of the partition which contains the point $x=0$ for which $M_{i}=1, m_{i}=-1$, and $\Delta\left(\alpha_{i}\right)=1$. Thus the corresponding upper sum U differs from the lower sum L by at least 2, so the integral does not exist.
(B) True, since α is continuous at the only discontinuity of the bounded function $f(x)$, namely the discontinuity at $x=0$.
(3)

Let $f(x)=\sum_{k=1}^{\infty} \frac{1}{1+x k^{2}}$ for $x \in(0,1)$. Fix $c \in(0,1)$.
(A) Show that this series converges uniformly on $(c, 1)$.
(B) Does the series converge uniformly on $(0,1)$? Justify.
(C) Is $f(x)$ continuous on $(0,1)$? Justify.

SOLUTION: (A) The k-th term is less than $1 /\left(c k^{2}\right)$, so the series converges uniformly by the Weierstrass test.
(B) No. The series does not converge uniformly on $(0,1)$, because for any large $M<N$, the sum from $k=M$ to $k=N$ is not uniformly small on
$(0,1)$. For example, if $x=1 / M^{2}$, then the term for $k=M$ already fails to be small, since it equals $1 / 2$.
(C) Yes. Note that $f(x)$ is continuous on $(c, 1)$ by part (A). Since c can be chosen arbitrarily close to $0, f(x)$ is continuous at every point in $(0,1)$.
(4) Let $f_{n}(x) \rightarrow f(x)$ uniformly on $(0,1)$, where each $f_{n}(x)$ is continuous on $(0,1)$. Prove that $f(x)$ is continuous on $(0,1)$.
Hint: Let $\epsilon>0$ and fix $x \in(0,1)$. Fix N such that $\left|f_{N}(u)-f(u)\right|<\epsilon$ for all $u \in(0,1)$. Show that $f(t) \rightarrow f(x)$ as $t \rightarrow x$.

SOLUTION: Take $u=t$ and $u=x$ in the inequality given in the Hint. Thus

$$
\left|f_{N}(x)-f(x)\right|<\epsilon, \quad\left|f_{N}(t)-f(t)\right|<\epsilon .
$$

Since f_{N} is continuous, there is a δ for which $|t-x|<\delta$ implies

$$
\left|f_{N}(t)-f_{N}(x)\right|<\epsilon
$$

Combining these three inequalities, we obtain $|f(t)-f(x)|<3 \epsilon$ when $|t-x|<$ δ.

