Math 140B Test 2 100 points May 23, 2014

Directions: Justify all answers. No calculators. If you appeal to a theorem, show that the hypotheses of that theorem are satisfied. The notation [x] denotes the greatest integer $\leq x$. Each problem is worth 25 points.

(1) Evaluate $\int_0^2 f d\alpha$

(A) when $f(x) = e^x$, $\alpha(x) = e^x$;

(B) when $f(x) = e^x$, $\alpha(x) = [x]$.

SOLUTION: (A) This equals the integral from x = 0 to x = 2 of e^{2x} , which is $(e^4 - 1)/2$.

(B) Since α jumps by 1 at x = 1 and at x = 2, the integral equals $f(1) + f(2) = e + e^2$.

(2) True or False: The integral ∫¹₋₁ fdα exists
(A) when f(x) = sin(1/x), α(x) = [x];
(B) when f(x) = sin(1/x), α(x) = sin(x).
Justify each True or False answer, using theorems if necessary.

SOLUTION: (A) False. There is a subinterval of the partition which contains the point x = 0 for which $M_i = 1$, $m_i = -1$, and $\Delta(\alpha_i) = 1$. Thus the corresponding upper sum U differs from the lower sum L by at least 2, so the integral does not exist.

(B) True, since α is continuous at the only discontinuity of the bounded function f(x), namely the discontinuity at x = 0.

(3)

Let $f(x) = \sum_{k=1}^{\infty} \frac{1}{1+xk^2}$ for $x \in (0,1)$. Fix $c \in (0,1)$.

(A) Show that this series converges uniformly on (c, 1).

(B) Does the series converge uniformly on (0, 1)? Justify.

(C) Is f(x) continuous on (0, 1)? Justify.

SOLUTION: (A) The k-th term is less than $1/(ck^2)$, so the series converges uniformly by the Weierstrass test.

(B) No. The series does not converge uniformly on (0, 1), because for any large M < N, the sum from k = M to k = N is not uniformly small on

(0,1). For example, if $x = 1/M^2$, then the term for k = M already fails to be small, since it equals 1/2.

(C) Yes. Note that f(x) is continuous on (c, 1) by part (A). Since c can be chosen arbitrarily close to 0, f(x) is continuous at every point in (0, 1).

(4) Let $f_n(x) \to f(x)$ uniformly on (0, 1), where each $f_n(x)$ is continuous on (0, 1). Prove that f(x) is continuous on (0, 1).

Hint: Let $\epsilon > 0$ and fix $x \in (0, 1)$. Fix N such that $|f_N(u) - f(u)| < \epsilon$ for all $u \in (0, 1)$. Show that $f(t) \to f(x)$ as $t \to x$.

SOLUTION: Take u = t and u = x in the inequality given in the Hint. Thus

$$|f_N(x) - f(x)| < \epsilon, \quad |f_N(t) - f(t)| < \epsilon.$$

Since f_N is continuous, there is a δ for which $|t - x| < \delta$ implies

$$|f_N(t) - f_N(x)| < \epsilon.$$

Combining these three inequalities, we obtain $|f(t) - f(x)| < 3\epsilon$ when $|t - x| < \delta$.