Math 152: Applicable Mathematics and Computing

April 12, 2017
Question

Consider a game where there is a single pile of chips on a table, and on your turn you may remove at least half of the chips. Which positions are P-positions? Determine the Sprague-Grundy function for all positions.
Remark about Section 3.4

- We won’t cover section 3.4 from Part I of the textbook. This concerns games which are not progressively bounded.
- Consider a game where there is some position x which has an infinite number of followers, and for every integer $n \in \mathbb{N}$, there is a follower of x with Sprague-Grundy value n. What is the mex?
- To answer this you need ordinals, which isn’t covered by any of our prerequisite courses.
Def. Given two progressively bounded directed graphs, $G_1 = (X_1, F_1)$ and $G_2 = (X_2, F_2)$, the **(disjunctive) sum** $G_1 + G_2$ of these two games is defined as follows. The vertex set is the set

$$X = X_1 \times X_2 = \{(x_1, x_2) : x_1 \in X_1, x_2 \in X_2\}.$$

The followers are defined by:

$$F(x_1, x_2) = (F_1(x_1) \times \{x_2\}) \cup (\{x_1\} \times F(x_2)).$$
We have defined the sum of two directed graphs. We saw in the last lecture that every impartial combinatorial game can be written as a graph game. So this means we have defined the sum of two impartial combinatorial games.

Informally, the sum of two games \(G_1 \) and \(G_2 \) is a game \(G_1 + G_2 \) where:

1. A position in \(G_1 + G_2 \) consists of a position in \(G_1 \) and a position in \(G_2 \).
2. On a player’s turn, they can choose either \(G_1 \) and \(G_2 \), and make a move in the game they choose.
3. The last player to make a move in either game wins. That is, a position \((x, y)\) is a terminal position exactly when \(x \) is a terminal position in \(G_1 \) and \(y \) is a terminal position in \(G_2 \).
If we can add two games, we can add any number of games. Eg. to add three games $G_1 + G_2 + G_3$, we add the game G_1 to the game $G_2 + G_3$. In practice, the resulting game looks like:

1. A position in $G_1 + G_2 + \cdots + G_k$ consists of a list of positions (x_1, x_2, \cdots, x_k) where x_i is a position in G_i.

2. On a player’s turn, they can choose any game from G_1, G_2, \cdots, G_k and make a move in that game.

3. The last player to make a move in any game wins. That is, a position (x_1, x_2, \cdots, x_k) is a terminal position exactly when x_i is a terminal position in G_i for all i.
Sprague–Grundy Theorem

Theorem (Sprague–Grundy)

If g_i is the Sprague-Grundy function of G_i, $i = 1, 2, \ldots, n$, then $G = G_1 + G_2 + \cdots + G_n$ has Sprague–Grundy function

$$g(x_1, x_2, \cdots, x_n) = g_1(x_1) \oplus g_2(x_2) \oplus \cdots \oplus g_n(x_n)$$
We have already seen sums of games before: a game of Nim with multiple piles is the sum of single-pile Nim games. The Sprague–Grundy function of a single-pile Nim game is $g(x) = x$. We saw that the Sprague–Grundy function for Nim is given by

$$g(x_1, x_2, \ldots, x_k) = x_1 \oplus x_2 \oplus \cdots \oplus x_k$$

This agrees with Bouton’s theorem.
Game (Subtraction game \oplus Nim)

If G_1 is the subtraction game where each player can subtract 1 or 2 coins on their turn, and G_2 is a Nim game with several piles. Let $G = G_1 + G_2$.

Notice that in the above game, we can treat the subtraction game as a Nim pile with 0, 1 or 2 chips. We can do this for any game where we can compute the Sprague–Grundy function: in this way, the Sprague–Grundy function converts any impartial game into Nim.
Consider a game where given a string consisting of the two characters ‘+’ and ‘-’, and on a player's turn they can turn any two adjacent ‘-‘ characters into two ‘+‘ characters. The last player to move is the winner.
Consider a game where there are several piles of chips. On a player’s turn, they may take any pile which has at least two chips, remove two chips and (if they wish) split the remaining chips into two new piles. The last player to make a move is the winner.