1. We have

\[A^{-1} = \begin{pmatrix} 1/2 & 0 & 0 & 0 \\ 0 & 1/3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1/3 \end{pmatrix} \]

So \(1^T A^{-1} 1 = (1/2 + 1/3 + 1 + 1/3) = 13/6 \). This is not zero, so we can use the nonsingular matrix theorem. The value of the game is \(V = (1^T A^{-1} 1)^{-1} = 6/13 \). The optimal strategies for each players are given by

\[p^T = V 1^T A^{-1} = (3/13 \ 2/13 \ 6/13 \ 2/13) \]

and

\[q^T = V 1 A^{-1} = (3/13 \ 2/13 \ 6/13 \ 2/13) \]

2. This is an upper triangular matrix, so let us try looking for an equalizing strategy. Let Player I’s strategy be \(p^T = (p_1 \ p_2 \ p_3 \ p_4) \) and let Player II’s strategy be \(q^T = (q_1 \ q_2 \ q_3 \ q_4) \). We get the following system of equations for Player I:

\[
\begin{align*}
 p_1 &= V \\
 -p_1 + p_2 &= V \\
 -2p_2 + p_3 &= V \\
 -p_1 + p_2 - p_3 + p_4 &= V \\
 p_1 + p_2 + p_3 + p_4 &= 1
\end{align*}
\]
Solving this, we get $V = 1/13$ and

$$p^T = \begin{pmatrix} 1/13 & 2/13 & 5/13 & 5/13 \end{pmatrix}$$

For Player II, we get the system

$$
\begin{align*}
q_1 - q_2 - q_4 &= V \\
q_2 - 2q_3 + q_4 &= V \\
q_3 - q_4 &= V \\
q_4 &= V \\
q_1 + q_2 + q_3 + q_4 &= 1
\end{align*}
$$

Solving this system, we get

$$q^T = \begin{pmatrix} 6/13 & 4/13 & 2/13 & 1/13 \end{pmatrix}$$

3. Denote the columns by A, B and C, and denote the rows by 1, 2 and 3. Now, swapping rows 1 and 3 and columns A and C leaves the payoff matrix unchanged. So, by Invariance, we can assume that the optimal strategies p and q satisfy $p(1) = p(3)$ and $q(A) = q(C)$.

We look for an equalizing strategy. For Player I, we get

$$
\begin{align*}
-4p(1) + p(2) + 2p(3) &= V \\
p(1) - 5p(2) + p(3) &= V \\
2p(1) + p(2) - 4p(3) &= V \\
p(1) + p(2) + p(3) &= 1
\end{align*}
$$

Now applying $p(1) = p(3)$, we get

$$
\begin{align*}
-2p(1) + p(2) &= V \\
2p(1) - 5p(2) &= V \\
2p(1) + p(2) &= 1
\end{align*}
$$

2
Solving this system, we get $V = -\frac{1}{2}$ and
\[
\mathbf{p}^T = \begin{pmatrix} 3/8 & 1/4 & 3/8 \end{pmatrix}
\]
Since the matrix is symmetric, the system of equations for finding an equalizing strategy for Player II is the same as for Player I. So we also have
\[
\mathbf{q}^T = \begin{pmatrix} 3/8 & 1/4 & 3/8 \end{pmatrix}
\]
4. Answer 1: Note that the payoff matrix A in this question satisfies $A(i, j) = i - j$. So we have
\[
A(i, j) = i - j = -(j - i) = -A(j, i)
\]
and so A is skew-symmetric. Therefore the value of the game is zero.

Answer 2: We can note that the bottom right entry of the matrix (entry (1000, 1000)) is a saddle point, since $A(1000, 1000) = 0$, and 0 is the smallest number in the last row and the largest number in the last column. So $V = 0$.

Answer 3: Note that the last row dominates all other rows. Similarly, the last column dominates all other columns. All that remains is the bottom right entry, which is 0. So $V = 0$.

5. (a) Given this strategy for Player II, the possible payoffs are
\[
A\mathbf{q} = \begin{pmatrix} 2q + 1 \\ -4q + 5 \end{pmatrix}
\]
Player I will choose the first row if $2q + 1 > -4q + 5 \iff q > 2/3$, and the second row otherwise.

(b) Player II knows that this is what Player I will choose. So Player II will choose the value of q that maximizes the outcome.
If $0 \leq q \leq 2/3$, then the payoff is $-4q + 5$. Along this interval, this function is minimized at $q = 2/3$. The payoff in this case is $7/3$.
If $2/3 < q \leq 1$, then the payoff is $2q + 1$, which is always greater than $7/3$ on this interval. So the minimum payoff that Player II can achieve is $7/3$, if they choose $q = 2/3$.

3
6. (a) Let \(C \) denote the matrix whose entries are all \(c \). So \(B = A + C \).

Answer 1: Let \(p, q \) be strategies chosen by players I and II during a game of \(B \). Then the payoff is

\[
p^T B q = p^T (A + C) q = p^T A q + c
\]

where the last equality follows from the fact that the entries of \(p \) and \(q \) sum to 1.

In particular, playing the game \(B \) is exactly the same as playing the game \(A \), and then adding \(c \) to the payoff of \(A \). It is clear that the optimal strategy for both players in such a game is just to use their optimal strategies for \(A \). In this case the payoff is \(V + c \), and so this is the value of \(B \).

Answer 2: Let \(p, q \) be a pair of optimal strategies for \(A \). Then, from the definition, we get that

\[
\min(p^T A) = V = \max(A q)
\]

(where min and max here represent the min and max entry of a vector).

Now we have

\[
\min(p^T B) = \min(p^T (A + C)) = \min(p^T A + p^T C)
\]

Note that since \(p \) is a probability vector, every entry of the vector \(p^T C \) is just \(c \). So

\[
\min(p^T B) = \min(p^T A) + c = V + c
\]

Similarly,

\[
\max(B q) = V + c
\]

From the definition of value, we get that \(V + c \) is the value of \(B \), with optimal strategies \(p \) and \(q \).

(b) Let \(A \) be the matrix given in the question. Notice that

\[
\begin{bmatrix}
2 & 1 & 0 & -1 \\
3 & 2 & 1 & 0 \\
4 & 3 & 2 & 1 \\
5 & 4 & 3 & 2
\end{bmatrix} = \begin{bmatrix}
0 & -1 & -2 & -3 \\
1 & 0 & -1 & -2 \\
2 & 1 & 0 & -1 \\
3 & 2 & 1 & 0
\end{bmatrix} + \begin{bmatrix}
2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2
\end{bmatrix}
\]
The first matrix on the right hand side is skew-symmetric, so has value 0. From (a), we get that

\[\text{Val}(A) = 0 + 2 = 2 \]