Some details in this syllabus may be subject to change in the future. If you have any questions contact your TA.

General Course Description: Second course in a two-quarter introduction to abstract algebra with some applications. Emphasis on rings and fields. Topics include: definitions and basic properties of rings, fields, ideals, homomorphisms and irreducibility of polynomials.

Time/Location: The lectures will take place MWF 11-11:50am in CSB 001.

Sections A01, A02 will take place Mon 4-5, 5-6 in CENTR 217A. Section A03 will take place Monday 6-7 in APM5402.

Prerequisite(s): Math 103A or Math 100A or consent of instructor.

Credit Hours: 4

Text(s): A First Course in Abstract Algebra
Author(s): J. B. Fraleigh

Grading: Homework will be assigned on the course website (http://www.math.ucsd.edu/ rkitsela/103B/hw.txt). You are strongly encouraged to seek help and discuss homework problems with your classmates and your TA. While homework scores will not be used in computing your final grade, completing the homework assignments is a valuable way to receive feedback on your understanding of the course material.

Homework problems will be assigned every Friday and will be due next Friday 12-noon at the mailboxes in the basement of APM. Selected problems will be graded and handed back the following week during sections. No late assignments will be accepted under any circumstances.

There will be two midterm exams and one final exam. Midterm 1 will be given during class on Monday, January 30. Midterm 2 will be given during class on Friday, February 17. The midterm questions will be very similar to the homework problems.

The final examination will be held on:

11:30am - 2:30pm, Monday, March 20, 2017

Your final course grade will be determined by your cumulative average at the end of the term, based on the following percentages:
Midterm exam 1 (Mon, January 30): 25%
Midterm exam 2 (Fri, February 17): 25%
Final exam (Mon, March 20): 50%

Course Policies:

- Exams

Two midterm exams and a final exam will be given during the quarter. **No makeup exams will be given.** If you cannot make a midterm you will need one of the following:

1. A doctor’s note indicating explicitly that you physically were unable to attend the exam.
2. A letter from your Dean of Students explaining that personal circumstances, other than illness, prevented you from taking the exam.

Without one of these documents, your grade on the missed midterm will be zero. Graded exams will be available from your TA in discussion section. If you wish to dispute anything about the grading of your assignment, you must do so within one week of it being available in section, and you must do so in writing before you leave the room with your assignment.

- Accommodation

Students requesting accommodations and services due to a disability need to provide a current Authorization for Accommodation (AFA) letter issued by the Office for Students with Disabilities (OSD) as soon as possible and prior to eligibility for requests. Receipt of AFAs in advance is necessary for appropriate planning for the provision of reasonable accommodations. For additional information, contact the Office for Students with Disabilities: 858-534-4382 (V); 959-534-9709 (TTY)- reserved for people who are deaf or hard of hearing; or email osd@ucsd.edu. The OSD website is http://disabilities.ucsd.edu

- Academic Integrity

Academic dishonesty will be taken very seriously, and students caught cheating will face penalties which range from failing the assignment or course to suspension or expulsion from the university. It is your responsibility to know what constitutes cheating. To review the Policy on Integrity of Scholarship at UCSD, please see http://students.ucsd.edu/academics/academic-integrity.

For answers to most general questions please refer to the FAQ on the UCSD academic integrity website:

http://academicintegrity.ucsd.edu/faq/index.html
Tentative Course Outline:
This may change as it depends on the progress of the class.

<table>
<thead>
<tr>
<th></th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• Review of Group Theory</td>
</tr>
<tr>
<td>2</td>
<td>• Rings and Fields, IV.18</td>
</tr>
<tr>
<td>3</td>
<td>• Integral Domains, IV.19</td>
</tr>
<tr>
<td>4</td>
<td>• Rings of Polynomials, IV.22</td>
</tr>
<tr>
<td>5</td>
<td>• Homomorphisms and Factor Rings, V.26</td>
</tr>
<tr>
<td>6</td>
<td>• Prime and Maximal Ideals, V.27</td>
</tr>
<tr>
<td>7</td>
<td>• Finite Fields</td>
</tr>
<tr>
<td>8</td>
<td>• Vector Spaces, V.30</td>
</tr>
<tr>
<td>9</td>
<td>• Public Cryptography</td>
</tr>
</tbody>
</table>