Practice Questions for Final

1. Suppose \(A \) is an \(m \times n \) matrix and \(B \) is a \(n \times p \) matrix.

 If \(B \) is invertible and \(AB = 0 \), what can you conclude about \(A \)?

 Is this still true if \(B \) is not assumed to be invertible? Explain

2. Show that the transformation \(T \) defined by

 \[
 T : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \\
 (x, y) \mapsto (x - 2y, x - 3, 2x - 5y)
 \]

 is not linear.

3. Consider the following matrix

 \[
 A = \begin{bmatrix}
 1 & 2 & 3 & -4 & 8 \\
 1 & 2 & 0 & 2 & 8 \\
 2 & 4 & -3 & 10 & 9 \\
 3 & 6 & 0 & 6 & 9
 \end{bmatrix}
 \]

 (a) Find a basis for \(\text{Col}(A) \)

 (b) Find a basis for \(\text{Null}(A) \)

 (c) Find a basis for \(\text{Row}(A) \)

 (d) What is Rank\((A)\)?

4. Suppose that \(\{v_1, \cdots, v_n\} \) is a linearly dependent set of vectors

 (a) Is it true that \(\{v_1, \cdots, v_n, v_{n+1}\} \) must also be linearly dependent
 (for any vector \(v_{n+1} \))

 (b) If \(\{v_1, \cdots, v_n\} \) also spans a vector space \(V \), what can you say
 about the dimension of \(V \)?

5. Let

 \[
 A = \begin{bmatrix}
 1 & 0 & -2 \\
 -3 & 1 & 4 \\
 2 & -3 & 4
 \end{bmatrix}
 \]

 Determine whether \(A \) is invertible and find \(A^{-1} \) if it is.
6. Let
\[\mathbf{u} = \begin{bmatrix} 4 \\ -1 \\ 4 \end{bmatrix} \text{ and } \mathbf{A} = \begin{bmatrix} 2 & 5 & -1 \\ 0 & 1 & -1 \\ 1 & 2 & 0 \end{bmatrix} \]

Is \(\mathbf{u} \) in \(\text{Col}(\mathbf{A}) \)?
What is \(\text{Rank}(\mathbf{A}) \)?
Find a basis for \(\text{Null}(\mathbf{A}) \)

7. Describe the solution set of the following system of equations (write your answer in vector parametric form).
\[
\begin{align*}
 x_1 + 2x_2 - 3x_3 &= 5 \\
 2x_1 + x_2 - 3x_3 &= 13 \\
 -x_1 + x_2 &= -8
\end{align*}
\]

Compare this with the solution set to
\[
\begin{align*}
 x_1 + 2x_2 - 3x_3 &= 0 \\
 2x_1 + x_2 - 3x_3 &= 0 \\
 -x_1 + x_2 &= 0
\end{align*}
\]

8. Consider the following matrix
\[\mathbf{A} = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 1 & -3 \\ -1 & 1 & 0 \end{bmatrix} \]

Find a basis for \(\text{Null}(\mathbf{A}) \), \(\text{Col}(\mathbf{A}) \), \(\text{Row}(\mathbf{A}) \), \(\text{Col}(\mathbf{A}^T) \), \(\text{Row}(\mathbf{A}^T) \)

Hint: You might find the work from the previous question helpful

9. Let
\[\mathbf{A} = \begin{bmatrix} 7 & 2 & 1 \\ 0 & 3 & -1 \\ -3 & 4 & -2 \end{bmatrix} \]

Find \(\mathbf{A}^{-1} \)
Write down $\text{Rank}(A)$ and $\text{dim}(\text{Null}(A))$ without doing any calculations

Use A^{-1} to solve the following system of equations without using row reduction

$$
\begin{align*}
14x_1 + 4x_2 + 2x_3 &= 4 \\
0x_1 + 6x_2 - 2x_3 &= 8 \\
-6x_1 + 8x_2 - 4x_3 &= 2
\end{align*}
$$

10. Consider the following two matrices

$$
A = \begin{bmatrix}
1 & 4 & 8 & -3 & -7 \\
-1 & 2 & 7 & 3 & 4 \\
-2 & 2 & 9 & 5 & 5 \\
3 & 6 & 9 & -5 & -2
\end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix}
1 & 4 & 8 & 0 & 5 \\
0 & 2 & 5 & 0 & -1 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
$$

Matrix B is a REF of A.

(a) Find a basis for $\text{Col}(A)$, what is $\text{rank}(A)$?
(b) Find a basis for $\text{Null}(A)$, what is the dimension of $\text{Null}(A)$?
(c) Find a basis for $\text{Col}(A^T)$

11. (a) If F is a 5×5 matrix whose columns do not span \mathbb{R}^5, what can you say about $\text{dim}(\text{Null}(F))$?
(b) If B is a 5×5 matrix and $\text{Null}(B)$ contains a non-zero vector, what can be said about $\text{Rank}(B)$?

12. Consider the following set of equations

$$
\begin{align*}
x + hy &= 2 \\
4x + 8y &= k
\end{align*}
$$

Find possible values of h and k such that the following system has

(a) No solution
(b) A unique solution
(c) Infinitely many solutions
13. (a) Find an equation involving a, b and c such that the following set of equations always has an solution.

\[
\begin{align*}
x - 4y + 7z &= a \\
3y - 5z &= b \\
-2x + 5y - 9z &= c
\end{align*}
\]

(b) Let

\[
A = \begin{bmatrix} 1 & -4 & 7 \\ 0 & 3 & -5 \\ -2 & 5 & -9 \end{bmatrix}
\]

Calculate $\text{Rank}(A)$ and $\dim(\text{Nul}(A))$

(c) Is A invertible? If so find A^{-1}, if not explain why not

14. Let

\[
A = \begin{bmatrix} 1 & 4 & 1 & 2 \\ 0 & 1 & 3 & -4 \\ 0 & 2 & 6 & 7 \\ 2 & 9 & 5 & -7 \end{bmatrix}
\]

Explain why the rank of A is 3.

Do the columns of A span \mathbb{R}^3? Why or why not?

15. Find and compare the solution sets of

\[
x + 5y - 3z = 0
\]

and

\[
x + 5y - 3z = -2
\]

Explain why the solution set of the first equation describes a 2-dimensional subspace of \mathbb{R}^3

Explain why the solution set of the second equation is not a subspace of \mathbb{R}^3

16. Consider the following vectors

\[
\mathbf{v}_1 = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -3 \\ 9 \\ -6 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 5 \\ -7 \\ h \end{bmatrix}
\]
(a) For which values of h is v_3 in $Span\{v_1, v_2\}$?
(b) For which values of h is the set $\{v_1, v_2, v_3\}$ linearly dependent.

17. Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a linear transformation. Suppose $\{u, v\}$ is linearly independent, but $\{T(u), T(v)\}$ is linearly dependent.

Show that $T(x) = 0$ must have a non-trivial solution.

(Hint: Use the fact that $c_1 T(u) + c_2 T(v) = 0$ has a solution for c_1, c_2 not both zero)

18. (a) A is a 4×4 matrix whose columns do not span \mathbb{R}^4.
Is A invertible? Why or why not?
(b) B is a 7×7 matrix whose columns are linearly independent and y is an arbitrary vector in \mathbb{R}^7.
Does the matrix equation $Bx = y$ always have a solution? Why or why not?

19. T is a linear transformation from \mathbb{R}^2 into \mathbb{R}^2 given by

$$T(x_1, x_2) = (-5x_1 + 9x_2, 4x_1 - 7x_2)$$

(a) Find the standard matrix of T
(b) Find a formula for T^{-1}

20. Let

$$A = \begin{bmatrix}
3 & -1 & -3 & -1 & 8 \\
3 & 1 & 3 & 0 & 2 \\
0 & 3 & 9 & -1 & -4 \\
6 & 3 & 9 & -2 & 6
\end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix}
3 & -1 & -3 & 0 & 6 \\
0 & 2 & 6 & 0 & -4 \\
0 & 0 & 0 & -1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Given that B is a REF of A

(a) Find a basis for $Col(A)$, what is rank(A)?
(b) Find a basis for $Nul(A)$, what is the dimension of $Nul(A)$?
(c) Find a basis for $Col(A^T)$
21. Let

\[
H = \left\{ \begin{bmatrix} a + 2b - d + 3e \\ -a - 3b - c + 4d - 7e \\ -2a - b + 3c - 7d + 6e \\ 3a + 4b - 2c + 7d - 9e \end{bmatrix} : a, b, c, d, e \in \mathbb{R} \right\}
\]

Find a basis for \(H \).

22. Let \(V \) be the first quadrant in the \(xy \)-plane

\[
V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x \geq 0, y \geq 0 \right\}
\]

(1) If \(u \) and \(v \) are vectors in \(V \), is \(u + v \) in \(V \)? Why?

(b) Find a vector \(u \) in \(V \) and a scalar \(c \) such that \(cu \) is \textbf{not} in \(V \).

Is \(V \) a subspace of \(\mathbb{R}^2 \)?

23. Let \(W \) be the union of the first and third quadrants in the \(xy \)-plane

\[
Q = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : xy \geq 0 \right\}
\]

(2) If \(u \) is in \(W \), and \(c \) is any scalar, is \(cu \) in \(W \)? Why?

(b) Find vectors \(u \) and \(v \) in \(W \) such that \(u + v \) is \textbf{not} in \(W \).

Is \(W \) a subspace of \(\mathbb{R}^2 \)?

24. In each of the following parts the set \(W \) be the set of all vectors of the form shown, where \(a \), \(b \) and \(c \) represent arbitrary real numbers. In each case, either find a set of vectors which spans \(W \) or give an example to show \(W \) is not a vector space

(a) Let

\[
W_1 = \left\{ \begin{bmatrix} 1 \\ 3a - 5b \\ 3b + 2a \end{bmatrix} : a, b \in \mathbb{R} \right\}
\]

Is \(W_1 \) a subspace of \(\mathbb{R}^3 \)? If so, find a set of basis vectors. If not, explain why not.
(b) Let

\[W_2 = \left\{ \begin{bmatrix} 4a \\ 0 \\ a + 3b + c \\ 3b - 2c \end{bmatrix} : a, b, c \in \mathbb{R} \right\} \]

Is \(W_2 \) a subspace of \(\mathbb{R}^4 \)? If so, find a set of basis vectors. If not, explain why not.

25. Suppose that \(T \) is a one-to-one transformation.

Show that if \(\{T(v_1), \ldots, T(v_p)\} \) is linearly dependent, then \(\{v_1, \ldots, v_p\} \) must be linearly dependent.

26. Consider the polynomials \(p_1(t) = 1 + t^2 \) and \(p_2(t) = 1 - t^2 \). Is \(\{p_1, p_2\} \) a linearly independent set in \(\mathbb{P}_3 \)? Why or why not?

Write down a basis for \(\mathbb{P}_3 \).

27. (a) Show that the set \(B = \{1 - t^2, t - t^2, 2 - t - t^2\} \) is not a basis for \(\mathbb{P}_2 \).

(b) Explain why \(C = \{1 - t^2, t - t^2, 2 - t - 2t^2\} \) is a basis. (Be clear about what is different between your answers to (a) and (b))

(c) Find the co-ordinate vector of \(p(t) = 3 - 4t^2 \) relative to \(C \).

(d) Find the polynomial with co-ordinate vector

\[\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \]

relative to \(C \).

28. Show that \(\{1, 2t, -2 + 4t^2, -12t + 8t^3\} \) is a basis for \(\mathbb{P}_3 \).

29. Let

\[A = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 4 & 1 \\ -1 & -1 & 2 \end{bmatrix} \]

(a) Find the eigenvalues of \(A \).

(b) Find a basis for each eigenspace of \(A \).

(c) (If possible) diagonalize \(A \).
30. Let
\[
A = \begin{bmatrix}
2 & 4 & 3 \\
-4 & -6 & -3 \\
3 & 3 & 1
\end{bmatrix}
\]
Diagonalize \(A \) if possible. If not, explain why not.

31. Let
\[
A = \begin{bmatrix}
2 & 0 & 0 \\
2 & 2 & 0 \\
2 & 2 & 2
\end{bmatrix}
\]
(a) What is the characteristic polynomial of \(A \)?
(b) Find the eigenvalues of \(A \)
(c) Find a basis for each eigenspace of \(A \)
(d) Diagonalize \(A \) (if possible)

32. (a) \(A \) is a 5 \(\times \) 5 matrix with two eigenvalues. One eigenspace is three-dimensional, and the other eigenspace is two-dimensional. Is \(A \) diagonalizable? Why?
(b) \(A \) is a 7 \(\times \) 7 matrix with three eigenvalues. One eigenspace is two-dimensional, and one of the other eigenspaces is three-dimensional. Is it possible that \(A \) is not diagonalizable?

33. Let
\[
B = \begin{bmatrix}
1 & 0 & 1 \\
1 & 1 & 2 \\
1 & 2 & 1
\end{bmatrix}
\]
Compute \(\det(B^5) \)

34. \(A \) and \(B \) be both 3 \(\times \) 3 matrices with \(\det(A) = 4 \) and \(\det(B) = -3 \).
Compute the following determinants if possible or state "cannot determine" if not.
(a) \(\det(AB) \)
(b) \(\det(A + B) \)
(c) \(\det(5A) \)
(d) \(\det(A^{-1}) \)
(e) \(\det(B^{-1} + 4A) \)
(f) $\det(A^3)$
(g) $\det(B^T)$

35. Let

$$A = \begin{bmatrix} 1 & 5 & -6 \\ -1 & -4 & 4 \\ -2 & -7 & 9 \end{bmatrix}$$

Calculate $\det(A)$ in two different ways

36. Let

$$B = \begin{bmatrix} 1 & 5 & -3 \\ 3 & -3 & 3 \\ 2 & 13 & -7 \end{bmatrix}$$

Calculate $\det(B)$ in two different ways

37. Show that if A is invertible, then:

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

38. Suppose that if A is diagonalizable, then $\det(A)$ is the product of the eigenvalues of A

 Hint: Start by writing down what it means for A to be diagonalizable, then take the determinant of both sides of the equation and use the properties of determinants.

39. Suppose B is a matrix such that $B^2 = 0$ (i.e. B^2 is the 0 matrix).

 Show that the only eigenvalue of B is 0

40. Let

 $$\mathcal{B} = \left\{ \begin{bmatrix} 3 \\ -5 \end{bmatrix}, \begin{bmatrix} -4 \\ 6 \end{bmatrix} \right\}$$

 (a) Find x given $[x]_\mathcal{B} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

 (b) Find $[x]_\mathcal{B}$ given $x = \begin{bmatrix} 3 \\ -7 \end{bmatrix}$
41. Let
\[B = \left\{ \begin{bmatrix} -1 \\ 8 \\ -5 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix} \right\} \text{ and } C = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \]

(a) Find \(P_{C \leftarrow B} \)
(b) Find \(P_{B \leftarrow C} \)

(c) Given that \(x \) has coordinates \(\begin{bmatrix} 1 \\ -1 \end{bmatrix} \) relative to \(B \) (i.e. \([x]_B = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \)), write down the coordinates of \(x \) relative to \(C \).

42. Let
\[B = \left\{ \begin{bmatrix} -6 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right\} \text{ and } C = \left\{ \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 6 \\ -2 \end{bmatrix} \right\} \]

(a) Find \(P_{C \leftarrow B} \)
(b) Find \(P_{B \leftarrow C} \)

(c) How are your answers to (a) and (b) related?

43. Suppose a vector \(y \) is orthogonal to vectors \(u \) and \(v \). Show that \(y \) is orthogonal to any vector in \(\text{span}\{u, v\} \).

Hint: An arbitrary vector \(z \) in \(\text{span}\{u, v\} \) has the form \(z = c_1u + c_2v \).
Show that \(y \) is orthogonal to such a \(z \).

44. Consider the following set of vectors
\[S = \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -5 \\ -2 \\ 1 \end{bmatrix} \right\} \]

(a) Show that \(S \) is an orthogonal set.
(b) Write down an **orthonormal** set corresponding to \(S \)

45. Consider the following set of vectors
\[S = \left\{ \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \]

(a) Show that \(S \) is an orthogonal basis for \(\mathbb{R}^3 \).
(b) Express
\[
x = \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix}
\]
as a linear combination of vectors in \(S \)

46. Let
\[
y = \begin{bmatrix} 2 \\ 6 \end{bmatrix} \quad \text{and} \quad u = \begin{bmatrix} 7 \\ 1 \end{bmatrix}
\]

(a) Compute the orthogonal projection of \(y \) onto the line through \(u \) and the origin.

(b) Write \(y \) as a sum of a vector in \(\text{span}\{u\} \) and a vector orthogonal to \(u \).

(c) Find the distance from \(y \) to the line through \(u \) and the origin.