Practice Questions for Final

1. Suppose A is an $m \times n$ matrix and B is a $n \times p$ matrix.

If B is invertible and $A B=0$, what can you conclude about A ?
Is this still true if B is not assumed to be invertible? Explain
2. Show that the transformation T defined by

$$
\begin{aligned}
T: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{3} \\
(x, y) & \longmapsto(x-2 y, x-3,2 x-5 y)
\end{aligned}
$$

is not linear.
3. Consider the following matrix

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 3 & -4 & 8 \\
1 & 2 & 0 & 2 & 8 \\
2 & 4 & -3 & 10 & 9 \\
3 & 6 & 0 & 6 & 9
\end{array}\right]
$$

(a) Find a basis for $\operatorname{Col}(A)$
(b) Find a basis for $\operatorname{Null}(A)$
(c) Find a basis for $\operatorname{Row}(A)$
(d) What is $\operatorname{Rank}(A)$?
4. Suppose that $\left\{\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{n}}\right\}$ is a linearly dependent set of vectors
(a) Is it true that $\left\{\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{n}}, \mathbf{v}_{\mathbf{n}+\mathbf{1}}\right\}$ must also be linearly dependent (for any vector \mathbf{v}_{n+1})
(b) If $\left\{\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{n}}\right\}$ also spans a vector space V, what can you say about the dimension of V ?
5. Let

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
-3 & 1 & 4 \\
2 & -3 & 4
\end{array}\right]
$$

Determine whether A is invertible and find A^{-1} if it is.
6. Let

$$
\mathbf{u}=\left[\begin{array}{c}
4 \\
-1 \\
4
\end{array}\right] \text { and } A=\left[\begin{array}{ccc}
2 & 5 & -1 \\
0 & 1 & -1 \\
1 & 2 & 0
\end{array}\right]
$$

Is \mathbf{u} in $\operatorname{Col}(A)$?
What is $\operatorname{Rank}(A)$?
Find a basis for $\operatorname{Null}(A)$
7. Describe the solution set of the following system of equations (write your answer in vector parametric form).

$$
\begin{aligned}
x_{1}+2 x_{2}-3 x_{3} & =5 \\
2 x_{1}+x_{2}-3 x_{3} & =13 \\
-x_{1}+x_{2} & =-8
\end{aligned}
$$

Compare this with the solution set to

$$
\begin{aligned}
x_{1}+2 x_{2}-3 x_{3} & =0 \\
2 x_{1}+x_{2}-3 x_{3} & =0 \\
-x_{1}+x_{2} & =0
\end{aligned}
$$

8. Consider the following matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & -3 \\
2 & 1 & -3 \\
-1 & 1 & 0
\end{array}\right]
$$

Find a basis for $\operatorname{Null}(A), \operatorname{Col}(A), \operatorname{Row}(A), \operatorname{Col}\left(A^{T}\right), \operatorname{Row}\left(A^{T}\right)$
Hint: You might find the work from the previous question helpful
9. Let

$$
A=\left[\begin{array}{ccc}
7 & 2 & 1 \\
0 & 3 & -1 \\
-3 & 4 & -2
\end{array}\right]
$$

Find A^{-1}

Write down $\operatorname{Rank}(A)$ and $\operatorname{dim}(\operatorname{Null}(A))$ without doing any calculations

Use A^{-1} to solve the following system of equations without using row reduction

$$
\begin{array}{r}
14 x_{1}+4 x_{2}+2 x_{3}=4 \\
0 x_{1}+6 x_{2}-2 x_{3}=8 \\
-6 x_{1}+8 x_{2}-4 x_{3}=2
\end{array}
$$

10. Consider the following two matrices

$$
A=\left[\begin{array}{ccccc}
1 & 4 & 8 & -3 & -7 \\
-1 & 2 & 7 & 3 & 4 \\
-2 & 2 & 9 & 5 & 5 \\
3 & 6 & 9 & -5 & -2
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccccc}
1 & 4 & 8 & 0 & 5 \\
0 & 2 & 5 & 0 & -1 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Matrix B is a REF of A.
(a) Find a basis for $\operatorname{Col}(A)$, what is $\operatorname{rank}(A)$?
(b) Find a basis for $\operatorname{Null}(A)$, what is the dimension of $\operatorname{Null}(A)$?
(c) Find a basis for $\operatorname{Col}\left(A^{T}\right)$
11. (a) If F is a 5×5 matrix whose columns do not span \mathbb{R}^{5}, what can you say about $\operatorname{dim}(\operatorname{Null}(F))$?
(b) If B is a 5×5 matrix and $\operatorname{Null}(B)$ contains a non-zero vector, what can be said about $\operatorname{Rank}(B)$?
12. Consider the following set of equations

$$
\begin{aligned}
x+h y & =2 \\
4 x+8 y & =k
\end{aligned}
$$

Find possible values of h and k such that the following system has
(a) No solution
(b) A unique solution
(c) Infinitely many solutions
13. (a) Find an equation involving a, b and c such that the following set of equations always has an solution.

$$
\begin{aligned}
x-4 y+7 z & =a \\
3 y-5 z & =b \\
-2 x+5 y-9 z & =c
\end{aligned}
$$

(b) Let

$$
A=\left[\begin{array}{ccc}
1 & -4 & 7 \\
0 & 3 & -5 \\
-2 & 5 & -9
\end{array}\right]
$$

Calculate $\operatorname{Rank}(\mathrm{A})$ and $\operatorname{dim}(\operatorname{Nul}(\mathrm{A}))$
(c) Is A invertible? If so find A^{-1}, if not explain why not
14. Let

$$
A=\left[\begin{array}{cccc}
1 & 4 & 1 & 2 \\
0 & 1 & 3 & -4 \\
0 & 2 & 6 & 7 \\
2 & 9 & 5 & -7
\end{array}\right]
$$

Explain why the rank of A is 3 .
Do the columns of A span \mathbb{R}^{3} ? Why or why not?
15. Find and compare the solution sets of

$$
x+5 y-3 z=0
$$

and

$$
x+5 y-3 z=-2
$$

Explain why the solution set of the first equation describes a 2-dimensional subspace of \mathbb{R}^{3}
Explain why the solution set of the second equation is not a subspace of \mathbb{R}^{3}
16. Consider the following vectors

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}
-3 \\
9 \\
-6
\end{array}\right], \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}
5 \\
-7 \\
h
\end{array}\right]
$$

(a) For which values of h is $\mathbf{v}_{\mathbf{3}}$ in $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$?
(b) For which values of h is the set $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ linearly dependent.
17. Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation. Suppose $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent, but $\{T(\mathbf{u}), T(\mathbf{v})\}$ is linearly dependent.
Show that $T(\mathbf{x})=\mathbf{0}$ must have a non-trivial solution.
(Hint: Use the fact that $c_{1} T(\mathbf{u})+c_{2} T(\mathbf{v})=\mathbf{0}$ has a solution for c_{1}, c_{2} not both zero)
18. (a) A is a 4×4 matrix whose columns do not span \mathbb{R}^{4}.

Is A invertible? Why or why not?
(b) B is a 7×7 matrix whose columns are linearly independent and \mathbf{y} is an arbitrary vector in \mathbb{R}^{7}.
Does the matrix equation $B \mathbf{x}=\mathbf{y}$ always have a solution? Why or why not?
19. T is a linear transformation from \mathbb{R}^{2} into \mathbb{R}^{2} given by

$$
T\left(x_{1}, x_{2}\right)=\left(-5 x_{1}+9 x_{2}, 4 x_{1}-7 x_{2}\right)
$$

(a) Find the standard matrix of T
(b) Find a formula for T^{-1}
20. Let

$$
A=\left[\begin{array}{ccccc}
3 & -1 & -3 & -1 & 8 \\
3 & 1 & 3 & 0 & 2 \\
0 & 3 & 9 & -1 & -4 \\
6 & 3 & 9 & -2 & 6
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccccc}
3 & -1 & -3 & 0 & 6 \\
0 & 2 & 6 & 0 & -4 \\
0 & 0 & 0 & -1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Given that B is a REF of A
(a) Find a basis for $\operatorname{Col}(A)$, what is $\operatorname{rank}(\mathrm{A})$?
(b) Find a basis for $\operatorname{Nul}(A)$, what is the dimension of $\operatorname{Nul}(\mathrm{A})$?
(c) Find a basis for $\operatorname{Col}\left(A^{T}\right)$
21. Let

$$
H=\left\{\left[\begin{array}{c}
a+2 b-d+3 e \\
-a-3 b-c+4 d-7 e \\
-2 a-b+3 c-7 d+6 e \\
3 a+4 b-2 c+7 d-9 e
\end{array}\right]: a, b, c, d, e \in \mathbb{R}\right\}
$$

Find a basis for H
22 . Let V be the first quadrant in the $x y$-plane

$$
V=\left\{\left[\begin{array}{l}
x \tag{1}\\
y
\end{array}\right]: x \geq 0, y \geq 0\right\}
$$

(a) If \mathbf{u} and \mathbf{v} are vectors in V, is $\mathbf{u}+\mathbf{v}$ in V ? Why?
(b) Find a vector \mathbf{u} in V and a scalar c such that $c \mathbf{u}$ is not in V.

Is V is a subspace of \mathbb{R}^{2}
23. Let W be the union of the first and third quadrants in the $x y$-plane

$$
Q=\left\{\left[\begin{array}{l}
x \tag{2}\\
y
\end{array}\right]: x y \geq 0\right\}
$$

(a) If \mathbf{u} is in W, and c is any scalar, is $c \mathbf{u}$ in W ? Why?
(b) Find vectors \mathbf{u} and \mathbf{v} in W such that $\mathbf{u}+\mathbf{v}$ is not in W.

Is W is a subspace of \mathbb{R}^{2}
24. In each of the following parts the set W be the set of all vectors of the form shown, where a, b and c represent arbitrary real numbers. In each case, either find a set of vectors which spans W or give an example to show W is not a vector space
(a) Let

$$
W_{1}=\left\{\left[\begin{array}{c}
1 \\
3 a-5 b \\
3 b+2 a
\end{array}\right]: a, b \in \mathbb{R}\right\}
$$

Is W_{1} a subspace of \mathbb{R}^{3} ? If so, find a set of basis vectors. If not, explain why not.
(b) Let

$$
W_{2}=\left\{\left[\begin{array}{c}
4 a \\
0 \\
a+3 b+c \\
3 b-2 c
\end{array}\right]: a, b, c \in \mathbb{R}\right\}
$$

Is W_{2} a subspace of \mathbb{R}^{4} ? If so, find a set of basis vectors. If not, explain why not.
25. Suppose that T is a one-to-one transformation.

Show that if $\left\{T\left(\mathbf{v}_{\mathbf{1}}\right), \cdots, T\left(\mathbf{v}_{\mathbf{p}}\right)\right\}$ is linearly dependent, then $\left\{\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{p}}\right\}$ must be linearly dependent.
26. Consider the polynomials $\mathbf{p}_{\mathbf{1}}(t)=1+t^{2}$ and $\mathbf{p}_{\mathbf{2}}(t)=1-t^{2}$. Is $\left\{\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}\right\}$ a linearly independent set in \mathbb{P}_{3} ? Why or why not?

Write down a basis for \mathbb{P}_{3}
27. (a) Show that the set $\mathcal{B}=\left\{1-t^{2}, t-t^{2}, 2-t-t^{2}\right\}$ is not a basis for \mathbb{P}_{2}.
(b) Explain why $\mathcal{C}=\left\{1-t^{2}, t-t^{2}, 2-t-2 t^{2}\right\}$ is a basis. (Be clear about what is different between your answers to (a) and (b))
(c) Find the co-ordinate vector of $\mathbf{p}(t)=3-4 t^{2}$ relative to \mathcal{C}
(d) Find the polynomial with co-ordinate vector

$$
\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]
$$

relative to \mathcal{C}.
28. Show that $\left\{1,2 t,-2+4 t^{2},-12 t+8 t^{3}\right\}$ is a basis for \mathbb{P}_{3}
29. Let

$$
A=\left[\begin{array}{ccc}
2 & -1 & -1 \\
1 & 4 & 1 \\
-1 & -1 & 2
\end{array}\right]
$$

(a) Find the eigenvalues of A
(b) Find a basis for each eigenspace of A
(c) (If possible) diagonalize A
30. Let

$$
A=\left[\begin{array}{ccc}
2 & 4 & 3 \\
-4 & -6 & -3 \\
3 & 3 & 1
\end{array}\right]
$$

Diagonalize A if possible. If not, explain why not.
31. Let

$$
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
2 & 2 & 0 \\
2 & 2 & 2
\end{array}\right]
$$

(a) What is the characteristic polynomial of A ?
(b) Find the eigenvalues of A
(c) Find a basis for each eigenspace of A
(d) Diagonalize A (if possible)
32. (a) A is a 5×5 matrix with two eigenvalues. One eigenspace is threedimensional, and the other eigenspace is two-dimensional. Is A diagonalizable? Why?
(b) A is a 7×7 matrix with three eigenvalues. One eigenspace is two-dimensional, and one of the other eigenspaces is threedimensional. Is it possible that A is not diagonalizable?
33. Let

$$
B=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

Compute $\operatorname{det}\left(B^{5}\right)$
34. A and B be both 3×3 matrices with $\operatorname{det}(A)=4$ and $\operatorname{det}(B)=-3$.

Compute the following determinants if possible or state "cannot determine" if not.
(a) $\operatorname{det}(A B)$
(b) $\operatorname{det}(A+B)$
(c) $\operatorname{det}(5 A)$
(d) $\operatorname{det}\left(A^{-1}\right)$
(e) $\operatorname{det}\left(B^{-1}+4 A\right)$
(f) $\operatorname{det}\left(A^{3}\right)$
(g) $\operatorname{det}\left(B^{T}\right)$
35. Let

$$
A=\left[\begin{array}{ccc}
1 & 5 & -6 \\
-1 & -4 & 4 \\
-2 & -7 & 9
\end{array}\right]
$$

Calculate $\operatorname{det}(A)$ in two different ways
36. Let

$$
B=\left[\begin{array}{ccc}
1 & 5 & -3 \\
3 & -3 & 3 \\
2 & 13 & -7
\end{array}\right]
$$

Calculate $\operatorname{det}(B)$ in two different ways
37. Show that if A is invertible, then:

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

38. Suppose that if A is diagonalizable, then $\operatorname{det}(A)$ is the product of the eigenvalues of A
Hint: Start by writing down what it means for A to be diagonalizable, then take the determinant of both sides of the equation and use the properties of determinants.
39. Suppose B is a matrix such that $B^{2}=0$ (i.e. B^{2} is the 0 matrix).

Show that the only eigenvalue of B is 0
40. Let

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
3 \\
-5
\end{array}\right],\left[\begin{array}{c}
-4 \\
6
\end{array}\right]\right\}
$$

(a) Find \mathbf{x} given

$$
[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

(b) Find $[\mathrm{x}]_{\mathcal{B}}$ given

$$
\mathbf{x}=\left[\begin{array}{c}
3 \\
-7
\end{array}\right]
$$

41. Let

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
-1 \\
8
\end{array}\right],\left[\begin{array}{c}
1 \\
-5
\end{array}\right]\right\} \quad \text { and } \quad \mathcal{C}=\left\{\left[\begin{array}{l}
1 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

(a) Find $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$
(b) Find $\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$
(c) Given that \mathbf{x} has coordinates $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ relative to \mathcal{B} (i.e. $[\mathbf{x}]_{\mathcal{B}}=$ $\left[\begin{array}{c}1 \\ -1\end{array}\right]$, write down the coordinates of \mathbf{x} relative to \mathcal{C}.
42. Let

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
-6 \\
-1
\end{array}\right],\left[\begin{array}{l}
2 \\
0
\end{array}\right]\right\} \quad \text { and } \quad \mathcal{C}=\left\{\left[\begin{array}{c}
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
6 \\
-2
\end{array}\right]\right\}
$$

(a) Find $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$
(b) Find $\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$
(c) How are your answers to (a) and (b) related?
43. Suppose a vector \mathbf{y} is orthogonal to vectors \mathbf{u} and \mathbf{v}. Show that \mathbf{y} is orthogonal to any vector in $\operatorname{span}\{\mathbf{u}, \mathbf{v}\}$
Hint: An arbitrary vector \mathbf{z} in $\operatorname{span}\{\mathbf{u}, \mathbf{v}\}$ has the form $\mathbf{z}=c_{1} \mathbf{u}+c_{2} \mathbf{v}$. Show that \mathbf{y} is orthogonal to such a \mathbf{z}.
44. Consider the following set of vectors

$$
\mathcal{S}=\left\{\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-5 \\
-2 \\
1
\end{array}\right]\right\}
$$

(a) Show that \mathcal{S} is an orthogonal set.
(b) Write down an orthonormal set corresponding to \mathcal{S}
45. Consider the following set of vectors

$$
\mathcal{S}=\left\{\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right],\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right]\right\}
$$

(a) Show that \mathcal{S} is an orthogonal basis for \mathbb{R}^{3}.
(b) Express

$$
\mathbf{x}=\left[\begin{array}{c}
5 \\
-3 \\
1
\end{array}\right]
$$

as a linear combination of vectors in \mathcal{S}
46. Let

$$
\mathbf{y}=\left[\begin{array}{l}
2 \\
6
\end{array}\right] \quad \text { and } \quad \mathbf{u}=\left[\begin{array}{l}
7 \\
1
\end{array}\right]
$$

(a) Compute the orthogonal projection of \mathbf{y} onto the line through \mathbf{u} and the origin.
(b) Write \mathbf{y} as a sum of a vector in $\operatorname{span}\{\mathbf{u}\}$ and a vector orthogonal to \mathbf{u}.
(c) Find the distance from \mathbf{y} to the line through \mathbf{u} and the origin.

