\qquad

1. Math 20F (Driver) Test \#1: Friday, 10/15/2010

Directions: Please do not use the text, lecture notes, or calculators on this test. Write your solutions clearly and explain what you are doing - do not simply write answers down with no explanation unless explicitly instructed to do so. All problems are worth 10 points each.

1. Show that

$$
C=\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \tag{1}\\
3 & 2 & 1 & -1 \\
2 & 0 & -2 & -2
\end{array}\right] \text { is row equivalent to }\left[\begin{array}{cccc}
1 & 0 & -1 & -1 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

To get credit for this problem you must show your steps and explain what row operations you are doing at each stage!!
2. Describe the general solution to the system of equations

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =1 \\
3 x_{1}+2 x_{2}+x_{3} & =-1 \\
2 x_{1}+0 x_{2}-2 x_{3} & =-2 .
\end{aligned}
$$

3. Suppose that

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & 2 & 1 \\
2 & 0 & -2
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \text { (from Eq. (1). }
$$

a: Describe the general solution to the equation $A \mathbf{x}=\mathbf{0}$.
\mathbf{b} : Is it possible to solve the system of equations $A \mathbf{x}=\mathbf{b}$ independent of the choice of $\mathbf{b} \in \mathbb{R}^{3}$? Briefly explain your answer.
4. Let

$$
\mathbf{a}_{1}=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right], \quad \mathbf{a}_{2}=\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right], \quad \text { and } \mathbf{a}_{3}=\left[\begin{array}{c}
3 \\
1 \\
-2
\end{array}\right]
$$

a: Are $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ linearly dependent? If yes express one of the three vectors as a linear combination of the other two.
b: Do $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ span \mathbb{R}^{3} ?
5. Answer the following question true or false. (No explanations need be given.)
a: For every 3×2 matrix A, the equation $A \mathbf{x}=\mathbf{0}$ has only one solution, namely $\mathbf{x}=\mathbf{0}$. \qquad
b: The columns of a 3×2 matrix can never span all of \mathbb{R}^{3}.
c: If A is a 2×3 matrix then it is possible that the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution, $\mathbf{x}=\mathbf{0}$.
6. Find all values of $\lambda \in \mathbb{R}$ so that the equation $A \mathbf{x}=\mathbf{0}$ has a non-trivial solution, where

$$
A:=\left[\begin{array}{cc}
1-\lambda & 4 \\
1 & 1-\lambda
\end{array}\right] .
$$

7. Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation such that

$$
T\left(\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \text { and } T\left(\left[\begin{array}{c}
-1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Find: a) $T\left(\left[\begin{array}{l}3 \pi \\ 2 \pi\end{array}\right]\right) \quad$ and \quad b) $T\left(\left[\begin{array}{l}0 \\ 2\end{array}\right]\right)$.
8. Let $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} be three vectors in \mathbb{R}^{4} and $A=\left[\mathbf{a}_{1}\left|\mathbf{a}_{2}\right| \mathbf{a}_{3}\right]-\mathrm{a} 4 \times 3$ matrix. Answer the following questions true or false (no explanation need be given);
a: If there are real numbers x_{1}, x_{2}, and x_{3} such that $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}=0$, then $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ is a linearly dependent set.
b: It is possible that $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ span \mathbb{R}^{4}.
\mathbf{c} : It is possible that the equation $A \mathbf{x}=\mathbf{0}$ has no solutions.
9. Suppose that A is a 3×4 matrix such that $A\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ and $C=\operatorname{rref}(A)=\left[\begin{array}{cccc}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0\end{array}\right]$, i.e. C is the reduced echelon form of A. Describe all solutions \mathbf{x} to the equation $A \mathbf{x}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$.
10. Suppose A is a 3×4 matrix which is again row equivalent to $\left[\begin{array}{cccc}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0\end{array}\right]$. Answer the following questions and give a brief reason for your answer.
a.: Do the columns of A span \mathbb{R}^{3} ?
b: Are the columns of A linearly independent?

Test 1 Solutions

1.

$$
\begin{aligned}
C=\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
3 & 2 & 1 & -1 \\
2 & 0 & -2 & -2
\end{array}\right] & \rightarrow\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
0 & -4 & -8 & -4 \\
0 & -4 & -8 & -4
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-3 R_{1} \\
R_{3} \rightarrow R_{3}-2 R_{1}
\end{array} \\
& \rightarrow\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
0 & -4 & -8 & -4 \\
0 & 0 & 0 & 0
\end{array}\right]{ }_{R} \rightarrow R_{3}-R_{2} \\
& \rightarrow\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad R_{2} \rightarrow-\frac{1}{4} R_{2} \\
& \rightarrow\left[\begin{array}{cccc}
1 & 0 & -1 & -1 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad R_{1} \rightarrow R_{1}-2 R_{2}
\end{aligned}
$$

2. The matrix C is the augmented matrix for this system and therefore we may use the row reduced form of C to get an equivalent system which becomes;

$$
x_{1}-x_{3}=-1 \text { and } x_{2}+2 x_{3}=1
$$

Now x_{3} is a free variable and therefore

$$
\begin{aligned}
{\left[\begin{array}{c}
-1+x_{3} \\
1-2 x_{3} \\
x_{3}
\end{array}\right] } & =\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
x_{3} \\
-2 x_{3} \\
x_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \text { with } x_{3} \text { free }
\end{aligned}
$$

describes all of the possible solutions. As a check observe that

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & 2 & 1 \\
2 & 0 & -2
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right] \text { and }} \\
& {\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & 2 & 1 \\
2 & 0 & -2
\end{array}\right]\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

3. Since

$$
[A \mid 0] \sim\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

we know that x_{3} is a free variable and $x_{1}=x_{3}$ and $x_{2}=-2 x_{3}$ so the solution is

$$
\left[\begin{array}{c}
x_{3} \\
-2 x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \text { where } x_{3} \text { is free. }
$$

b. Since $\operatorname{rref}(A)$ has a row of zeros, i.e. there is not a pivot in the last row it is not always possible to solve $A \mathbf{x}=\mathbf{b}$ for all $\mathbf{b} \in \mathbb{R}^{3}$.
4. a. Since $A=\left[a_{1}\left|a_{2}\right| a_{3}\right] \sim\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$ has a free variable, the $\left\{a_{1}, a_{2}, a_{3}\right\}$ are linearly dependent and from Problems 3 we know that $1 a_{1}-2 a_{2}+a_{3}=0$ so that

$$
a_{1}=2 a-a_{3} .
$$

b. No they do not span \mathbb{R}^{3} since again there is not a pivot in every row. See part 3 b which is equivalent to this question.
5. Answer the following question true or false. (No explanations need be given.)
a: For every 3×2 matrix A, the equation $A \mathbf{x}=\mathbf{0}$ has only one solution,
namely $\mathrm{x}=\mathbf{0}$.

False
b: The columns of a 3×2 matrix can never span all of \mathbb{R}^{3}.
True
c: If A is a 2×3 matrix then it is possible that the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution, $\mathbf{x}=\mathbf{0}$.

False
6.

$$
\begin{aligned}
{\left[\begin{array}{cc}
1-\lambda & 4 \\
1 & 1-\lambda
\end{array}\right] } & \sim\left[\begin{array}{cc}
1 & 1-\lambda \\
1-\lambda & 4
\end{array}\right] R_{1} \leftrightarrows R_{2} \\
& \sim\left[\begin{array}{cc}
1 & 1-\lambda \\
0 & 4-(1-\lambda)^{2}
\end{array}\right] \quad R_{2} \rightarrow R_{2}-(1-\lambda) R_{1}
\end{aligned}
$$

So the only way $A x=0$ will have a non trivial solution is if x_{2} is a free variable which happens iff $4-(1-\lambda)^{2}=0$, i.e. $4=(1-\lambda)^{2}$ or $1-\lambda= \pm 2$. Ans: $\lambda=-1$ or $\lambda=3$.
7. a. $T\left(\left[\begin{array}{l}3 \pi \\ 2 \pi\end{array}\right]\right)=\pi T\left(\left[\begin{array}{l}3 \\ 2\end{array}\right]\right)=\pi\left[\begin{array}{l}2 \\ 3\end{array}\right]=\left[\begin{array}{l}2 \pi \\ 3 \pi\end{array}\right]$.
b. Since

$$
\left[\begin{array}{l}
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]+3\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
$$

the linearity of T implies;

$$
\begin{aligned}
T\left[\begin{array}{l}
0 \\
2
\end{array}\right] & =T\left[\begin{array}{l}
3 \\
2
\end{array}\right]+3 T\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
2 \\
3
\end{array}\right]+3\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
6
\end{array}\right]
\end{aligned}
$$

8. Let $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} be three vectors in \mathbb{R}^{4} and $A=\left[\mathbf{a}_{1}\left|\mathbf{a}_{2}\right| \mathbf{a}_{3}\right]-\mathrm{a} 4 \times 3$ matrix. Answer the following questions true or false (no explanation need be given);
a: If there are real numbers x_{1}, x_{2}, and x_{3} such that $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}=0$, then $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ is a linearly dependent set.

False
b: It is possible that $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ span \mathbb{R}^{4}.
False
\mathbf{c} : It is possible that the equation $A \mathbf{x}=\mathbf{0}$ has no solutions.
False
9. Since

$$
\operatorname{rref}(A)=\left[\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right] \text { and } x_{4} \text { is free, }
$$

the solutions to the homogeneous equation $A x=0$ are of the form;

$$
x=\left[\begin{array}{c}
-2 x_{4} \\
x_{4} \\
0 \\
x_{4}
\end{array}\right]=x_{4}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
1
\end{array}\right]: x_{4} \text { free }
$$

and so the general solution to $A \mathbf{x}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ is of the form (particular + homogeneous solution)

$$
\left[\begin{array}{l}
1 \\
1 \\
2 \\
1
\end{array}\right]+x_{4}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
1
\end{array}\right]: x_{4} \text { free. }
$$

10.

$$
A \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

a.: Yes the columns of A span \mathbb{R}^{3} since this will happen iff there is a pivot in every row of $\operatorname{rref}(A)$ which is true. Alternativle this happens iff $A x=b$ has a solution for all $b \in \mathbb{R}^{3}$ and this holds as $\operatorname{rref}(A)$ has a pivot in every row.
b: No the columns of A are linearly dependent since $\operatorname{rref}(\mathrm{A})$ has a free variable, x_{4}. Taking $x_{4}=1$ shows in fact that

$$
-2 a_{1}+a_{2}+0 a_{3}+a_{4}=0
$$

