Name: Answer Key at end

Sec. No. _____

1. MATH 20F (DRIVER) TEST #1: FRIDAY, 10/15/2010

Directions: Please do not use the text, lecture notes, or calculators on this test. Write your solutions clearly and explain what you are doing – do not simply write answers down with no explanation unless explicitly instructed to do so. All problems are worth 10 points each.

1. Show that

		1	2	3	1		1	0	-1	-1 7]
(1)	C =	3	2	1	-1	is row equivalent to	0	1	2	1	
		2	0	-2	-2		0	0	0	0	

To get credit for this problem you **must** show your steps and explain what row operations you are doing at each stage!!

2. Describe the general solution to the system of equations

 $x_1 + 2x_2 + 3x_3 = 1,$ $3x_1 + 2x_2 + x_3 = -1,$ $2x_1 + 0x_2 - 2x_3 = -2.$ 2_____

3. Suppose that

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 0 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$
(from Eq. (1).

a: Describe the general solution to the equation $A\mathbf{x} = \mathbf{0}$.

b: Is it possible to solve the system of equations $A\mathbf{x} = \mathbf{b}$ independent of the choice of $\mathbf{b} \in \mathbb{R}^3$? Briefly explain your answer.

4. Let

$$\mathbf{a}_1 = \begin{bmatrix} 1\\3\\2 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 2\\2\\0 \end{bmatrix}, \quad \text{and } \mathbf{a}_3 = \begin{bmatrix} 3\\1\\-2 \end{bmatrix}.$$

a: Are $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ linearly dependent? If yes express one of the three vectors as a linear combination of the other two.

b: Do $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ span \mathbb{R}^3 ?

5. Answer the following question true or false. (No explanations need be given.)
a: For every 3 × 2 matrix A, the equation Ax = 0 has only one solution, namely x = 0.

b: The columns of a 3×2 matrix can never span all of \mathbb{R}^3 .

c: If A is a 2×3 matrix then it is possible that the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution, $\mathbf{x} = \mathbf{0}$.

6. Find all values of $\lambda \in \mathbb{R}$ so that the equation $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution, where

$$A := \left[\begin{array}{cc} 1-\lambda & 4\\ 1 & 1-\lambda \end{array} \right].$$

7. Suppose that $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that $T\left(\begin{bmatrix}3\\2\end{bmatrix}\right) = \begin{bmatrix}2\\3\end{bmatrix}$ and $T\left(\begin{bmatrix}-1\\0\end{bmatrix}\right) = \begin{bmatrix}-1\\1\end{bmatrix}$. Find: a) $T\left(\begin{bmatrix}3\pi\\2\pi\end{bmatrix}\right)$ and b) $T\left(\begin{bmatrix}0\\2\end{bmatrix}\right)$.

8. Let \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 be three vectors in \mathbb{R}^4 and $A = [\mathbf{a}_1 | \mathbf{a}_2 | \mathbf{a}_3] - a 4 \times 3$ matrix. Answer the following questions true or false (no explanation need be given);

a: If there are real numbers x_1 , x_2 , and x_3 such that

 $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = 0$, then $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ is a linearly dependent set.

- **b:** It is possible that $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ span \mathbb{R}^4 .
- c: It is possible that the equation $A\mathbf{x} = \mathbf{0}$ has no solutions.

9. Suppose that A is a 3×4 matrix such that $A \begin{bmatrix} 1\\1\\2\\1 \end{bmatrix} = \begin{bmatrix} 3\\2\\1 \end{bmatrix}$ and $C = \operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & 0 & 2\\0 & 1 & 0 & -1\\0 & 0 & 1 & 0 \end{bmatrix}$, i.e. C is the reduced echelon form of A. Describe **all** solutions **x** to the equation $A\mathbf{x} = \begin{bmatrix} 3\\2\\1 \end{bmatrix}$.

10. Suppose A is a 3×4 matrix which is again row equivalent to questions and give a brief reason for your answer	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \end{array}$	$\begin{array}{c}2\\-1\\0\end{array}$. Answer the following
questions and give a brief reason for your answer.	_			_	
a.: Do the columns of A span \mathbb{R}^3 ?					
b : Are the columns of A linearly independent?					

$$C = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 3 & 2 & 1 & -1 \\ 2 & 0 & -2 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -4 & -8 & -4 \\ 0 & -4 & -8 & -4 \end{bmatrix} \begin{array}{c} R_2 \rightarrow R_2 - 3R_1 \\ R_3 \rightarrow R_3 - 2R_1 \\ \end{array}$$
$$\rightarrow \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -4 & -8 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{array}{c} R_3 \rightarrow R_3 - R_2 \\ \end{array}$$
$$\rightarrow \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{array}{c} R_2 \rightarrow -\frac{1}{4}R_2 \\ \end{array}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & -1 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{array}{c} R_1 \rightarrow R_1 - 2R_2 \end{array}$$

2. The matrix C is the augmented matrix for this system and therefore we may use the row reduced form of C to get an equivalent system which becomes;

$$x_1 - x_3 = -1$$
 and $x_2 + 2x_3 = 1$.

Now x_3 is a free variable and therefore

$$\begin{bmatrix} -1+x_3\\1-2x_3\\x_3 \end{bmatrix} = \begin{bmatrix} -1\\1\\0 \end{bmatrix} + \begin{bmatrix} x_3\\-2x_3\\x_3 \end{bmatrix}$$
$$= \begin{bmatrix} -1\\1\\0 \end{bmatrix} + x_3 \begin{bmatrix} 1\\-2\\1 \end{bmatrix} \text{ with } x_3 \text{ free}$$

describes all of the possible solutions. As a check observe that

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 0 & -2 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix} \text{ and}$$
$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 0 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

6

3. Since

$$[A|0] \sim \left[\begin{array}{rrrr} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

we know that x_3 is a free variable and $x_1 = x_3$ and $x_2 = -2x_3$ so the solution is

$$\begin{bmatrix} x_3 \\ -2x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
 where x_3 is free.

b. Since $\operatorname{rref}(A)$ has a row of zeros, i.e. there is not a pivot in the last row it is **not** always possible to solve $A\mathbf{x} = \mathbf{b}$ for all $\mathbf{b} \in \mathbb{R}^3$.

4. a. Since $A = [a_1|a_2|a_3] \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$ has a free variable, the $\{a_1, a_2, a_3\}$ are linearly dependent and from Problems 3 we know that $1a_1 - 2a_2 + a_3 = 0$ so that

$$a_1 = 2a - a_3$$

b. No they do not span \mathbb{R}^3 since again there is not a pivot in every row. See part 3b which is equivalent to this question. \blacksquare

5. Answer the following question true or false. (No explanations need be given.)	
a: For every 3×2 matrix A, the equation $A\mathbf{x} = 0$ has only one solution,	
namely $\mathbf{x} = 0$.	False
b: The columns of a 3×2 matrix can never span all of \mathbb{R}^3 .	True
c: If A is a 2×3 matrix then it is possible that the equation $A\mathbf{x} = 0$	

False

has only the trivial solution, $\mathbf{x} = \mathbf{0}$.

6.

$$\begin{bmatrix} 1-\lambda & 4\\ 1 & 1-\lambda \end{bmatrix} \sim \begin{bmatrix} 1 & 1-\lambda\\ 1-\lambda & 4 \end{bmatrix} R_1 \leftrightarrows R_2$$
$$\sim \begin{bmatrix} 1 & 1-\lambda\\ 0 & 4-(1-\lambda)^2 \end{bmatrix} R_2 \rightarrow R_2 - (1-\lambda)R_1.$$

So the only way Ax = 0 will have a non trivial solution is if x_2 is a free variable which happens iff $4 - (1 - \lambda)^2 = 0$, i.e. $4 = (1 - \lambda)^2$ or $1 - \lambda = \pm 2$. Ans: $\lambda = -1$ or $\lambda = 3$.

7. a.
$$T\left(\begin{bmatrix} 3\pi\\ 2\pi \end{bmatrix}\right) = \pi T\left(\begin{bmatrix} 3\\ 2 \end{bmatrix}\right) = \pi \begin{bmatrix} 2\\ 3 \end{bmatrix} = \begin{bmatrix} 2\pi\\ 3\pi \end{bmatrix}.$$

b. Since
$$\begin{bmatrix} 0\\ 2 \end{bmatrix} = \begin{bmatrix} 3\\ 2 \end{bmatrix} + 3 \begin{bmatrix} -1\\ 0 \end{bmatrix}$$

the linearity of T implies;

$$T\begin{bmatrix} 0\\2 \end{bmatrix} = T\begin{bmatrix} 3\\2 \end{bmatrix} + 3T\begin{bmatrix} -1\\0 \end{bmatrix}$$
$$= \begin{bmatrix} 2\\3 \end{bmatrix} + 3\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} -1\\6 \end{bmatrix}.$$

8. Let \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 be three vectors in \mathbb{R}^4 and $A = [\mathbf{a}_1 | \mathbf{a}_2 | \mathbf{a}_3] - a 4 \times 3$ matrix. Answer the following questions true or false (no explanation need be given);

a: If there are real numbers x₁, x₂, and x₃ such that x₁a₁ + x₂a₂ + x₃a₃ = 0, then {a₁, a₂, a₃} is a linearly dependent set. False
b: It is possible that {a₁, a₂, a₃} span R⁴. False

c: It is possible that the equation $A\mathbf{x} = \mathbf{0}$ has no solutions.

9. Since

$$rref(A) = \begin{bmatrix} 1 & 0 & 0 & 2\\ 0 & 1 & 0 & -1\\ 0 & 0 & 1 & 0 \end{bmatrix} \text{ and } x_4 \text{ is free,}$$

the solutions to the homogeneous equation Ax = 0 are of the form;

$$x = \begin{bmatrix} -2x_4 \\ x_4 \\ 0 \\ x_4 \end{bmatrix} = x_4 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix} : x_4 \text{ free}$$
$$\begin{bmatrix} 3 \end{bmatrix}$$

and so the general solution to $A\mathbf{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is of the form (particular + homogeneous solution)

$$\begin{bmatrix} 1\\1\\2\\1 \end{bmatrix} + x_4 \begin{bmatrix} -2\\1\\0\\1 \end{bmatrix} : x_4 \text{ free.}$$

10

- **10.** $A \sim \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
 - **a.:** Yes the columns of A span \mathbb{R}^3 since this will happen iff there is a pivot in every row of $\operatorname{rref}(A)$ which is true. Alternative this happens iff Ax = b has a solution for all $b \in \mathbb{R}^3$ and this holds as $\operatorname{rref}(A)$ has a pivot in every row.
 - **b**: No the columns of A are linearly dependent since rref(A) has a free variable, x_4 . Taking $x_4 = 1$ shows in fact that

$$-2a_1 + a_2 + 0a_3 + a_4 = 0.$$

False