Final Examination

Version A

Name:
PID:

Instructions

1. Write your Name, PID, Section, and Exam Version on the front of your Blue Book.
2. No calculators or other electronic devices are allowed during this exam.
3. You may use one page of notes, but no books or other assistance during this exam.
4. Read each question carefully, and answer each question completely.
5. Write your solutions clearly in your Blue Book.
(a) Carefully indicate the number and letter of each question and question part.
(b) Present your answers in the same order they appear in the exam.
(c) Start each problem on a new side of a page.
6. Show all of your work. No credit will be given for unsupported answers, even if correct.
7. Write Name \& PID on this exam sheet and return it inside the front cover of your Blue Book.
8. (2 points) Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
9. Consider the linear system

$$
\begin{aligned}
x_{1}+3 x_{2}-3 x_{3} & =7 \\
x_{2} & -4 x_{3}=5
\end{aligned}
$$

(a) (4 points) Determine the solution set and write it in parametric form.
(b) (2 points) Write the parametric form for the solution set of the corresponding homogeneous equation.
2. $A=\left[\begin{array}{rrrrrr}2 & 3 & 1 & 8 & 2 & 3 \\ -1 & 2 & 3 & 3 & 3 & 3 \\ 3 & 1 & -2 & 5 & 3 & 8 \\ 1 & 4 & 3 & 9 & 2 & 1\end{array}\right]$ is row equivalent to $B=\left[\begin{array}{rrrrrr}1 & 0 & -1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 2 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.

Find a basis for each of the following subspaces associated with the matrix A :
(a) (1 point) $\operatorname{Col}(A)$, the column space of A.
(b) (2 points) $\operatorname{Col}\left(A^{T}\right)$, the column space of A^{T}.
(c) (3 points) Row $(A)^{\perp}$, the orthogonal complement of the row space of A.
3. A certain 6×11 matrix A has rank 3 ; that is, $\operatorname{rank}(A)=3$. Determine each of the following quantities. Be sure to (briefly!) indicate how you arrived at your answers.
(a) (2 points) $\operatorname{dim}[\operatorname{Nul}(A)]$
(b) (2 points) $\operatorname{dim}\left[\operatorname{Col}\left(A^{T}\right)\right]$
(c) (2 points) $\operatorname{dim}\left[\operatorname{Nul}\left(A^{T}\right)\right]$

Exam continues with Problems $4-8$ on the other side of this sheet.
4. Let A be a nonzero $n \times n$ matrix such that $A^{2}=0$, the $n \times n$ zero matrix.
(a) (2 points) Show that $\lambda=0$ is the only eigenvalue of A.
(b) (4 points) Show that A is not diagonalizable.
5. Let A be an invertible matrix.
(a) (2 points) Explain why $\lambda=0$ cannot be an eigenvalue of A.
(b) (4 points) Show that if \mathbf{w} is an eigenvector of A corresponding to λ, then \mathbf{w} is also an eigenvector of A^{-1} corresponding to $\frac{1}{\lambda}$.
6. (6 points) Solve the initial value problem $\mathbf{y}^{\prime}(t)=A \mathbf{y}(t) ; \mathbf{y}(0)=\mathbf{c}$, where

$$
A=\left[\begin{array}{ll}
6 & 2 \\
2 & 3
\end{array}\right] ; \quad \mathbf{c}=\left[\begin{array}{l}
3 \\
4
\end{array}\right] .
$$

7. Given the matrix $A=\left[\begin{array}{rrr}1 & -1 & 3 \\ 1 & 3 & -2 \\ 1 & 3 & 1 \\ 1 & -1 & 0\end{array}\right]$.
(a) (4 points) Find an orthonormal basis for the column space of A.
(b) (2 points) Factor A into a product $Q R$, where Q is a matrix with orthonormal columns and R is an upper triangular matrix.
8. Consider the following system of linear equations.

$$
\begin{aligned}
x_{1}-x_{2} & =1 \\
-2 x_{1}+x_{2} & =-2 \\
x_{1}+2 x_{2} & =4
\end{aligned}
$$

(a) (2 points) Explain why the system is inconsistent.
(b) (4 points) Find the least-squares solution to the system.

