Midterm Exam 1
 Version A

PID:

Instructions

1. Write your Name, PID, Section, and Exam Version on the front of your Blue Book.
2. No calculators or other electronic devices are allowed during this exam.
3. You may use one page of notes, but no books or other assistance during this exam.
4. Read each question carefully, and answer each question completely.
5. Write your solutions clearly in your Blue Book.
(a) Carefully indicate the number and letter of each question and question part.
(b) Present your answers in the same order they appear in the exam.
(c) Start each problem on a new side of a page.
6. Show all of your work. No credit will be given for unsupported answers, even if correct.
7. Write Name \& PID on this exam sheet and return it inside the front cover of your Blue Book.

0 . (1 point) Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.

1. Let S be the linear system $\left\{\begin{aligned} x_{1}-2 x_{2}+2 x_{3} & =5 \\ & x_{2}+3 x_{3}= \\ x_{1}-3 x_{2}-x_{3} & =3\end{aligned}\right.$.
(a) (4 points) Find the solution set of the linear system S and write it in parametric form.
(b) (2 points) Write the solution set of the corresponding homogoneous linear system. (Hint: This should not require any computation.)
2. Let $A=\left[\begin{array}{ccc}1 & 3 & 5 \\ 3 & 1 & 7 \\ 1 & -1 & 1\end{array}\right]$. The reduced echelon form of A is $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$.
(a) (3 points) Find the solution set of the homogeneous equation $A \mathbf{x}=\mathbf{0}$ and write it in parametric form.
(b) (3 points) If possible, find a vector $\mathbf{b} \in \mathbb{R}^{3}$ that cannot be written as a linear combination of the columns of A. If it is not possible, explain why it is not possible.
3. Let $S=\left\{\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right],\left[\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}-3 \\ 4 \\ 2\end{array}\right]\right\}$.
(a) (3 points) Determine whether S is linearly dependent or linearly independent.
(b) (3 points) Determine whether or not S spans \mathbb{R}^{3}.
4. (6 points) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that

$$
T\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right], \quad T\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right], \quad T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right] .
$$

Find the standard matrix for T.

