Midterm Exam 2
 Version A

Name:
PID:

Instructions

1. Write your Name, PID, Section, and Exam Version on the front of your Blue Book.
2. No calculators or other electronic devices are allowed during this exam.
3. You may use one page of notes, but no books or other assistance during this exam.
4. Read each question carefully, and answer each question completely.
5. Write your solutions clearly in your Blue Book.
(a) Carefully indicate the number and letter of each question and question part.
(b) Present your answers in the same order they appear in the exam.
(c) Start each problem on a new side of a page.
6. Show all of your work. No credit will be given for unsupported answers, even if correct.
7. Write Name \& PID on this exam sheet and return it inside the front cover of your Blue Book.

0 . (1 point) Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.

1. $A=\left[\begin{array}{rrrrrr}1 & -4 & -3 & 1 & -2 & -8 \\ 3 & 2 & 5 & 1 & 6 & 2 \\ 2 & 3 & 5 & 2 & 7 & 6 \\ 4 & -1 & 3 & 2 & 5 & -4\end{array}\right]$ is row equivalent to $B=\left[\begin{array}{rrrrrr}1 & 0 & 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.

Find a basis for each of the following subspaces associated with the matrix A :
(a) (1 point) $\operatorname{Col}(A)$, the column space of A.
(b) (2 points) $\operatorname{Col}\left(A^{T}\right)$, the column space of A^{T}.
(c) (3 points) $\operatorname{Nul}(A)$, the null space of A.
2. (6 points) The set $\mathcal{S}=\left\{\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$ is a linearly independent subset of \mathbb{R}^{4}. Extend \mathcal{S} to a basis of \mathbb{R}^{4}; that is, find a vector \mathbf{b} so that $\mathcal{B}=\mathcal{S} \cup\{\mathbf{b}\}$ is a basis for \mathbb{R}^{4}. Be sure to explain how you know that the set \mathcal{B} you obtain is a basis for \mathbb{R}^{4}.
3. (6 points) Let A be a $m \times n$ matrix and B a $n \times p$ matrix. Suppose that the $m \times p$ matrix $C=A B$ has the property that $C \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^{m}. Find $\operatorname{dim}[\operatorname{Col}(A)]$, the dimension of the column space of A. Be sure to justify your answer.
4. (6 points) Let \mathscr{E} be a homogeneous system of 8 linear equations in 10 unknowns. Is it possible for the solution set of \mathscr{E} to consist of all multiples of a fixed nonzero solution? Justify your answer.

