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1. (48 Points.) The following are True/False questions. For this problem only, you do not have to
show any work. There will be no partial credit given for this problem. For this problem:

• A correct answer gives 4 points.

• An incorrect answer gives 0 points.

• If you leave the space blank, you receive 2 points.

T (a) If a vector space V is spanned by p vectors, then it’s impossible for a set of more than p vectors
to be linearly independent.

T (b) If the LU-factorization of an n×n matrix A has a zero in either the diagonal of L or U , then A is
not invertible.

T (c) Assume the vector space V has an inner product and that~u,~y∈V . The two orthogonal projections:
proj~u~y and proj3~u~y must be equal.

F (d) Assume A is an m× n matrix and~b is a vector in Rm. Then the set of solutions to A~x =~b is a
subspace of Rn.

T (e) If the homogeneous problem A~v =~0 only has the trivial solution, then whenever A~x =~b has a
solution, it is unique.

F (f) The product of two nonzero matrices must be a nonzero matrix.

T (g) If the columns of an n×n matrix are linearly independent, then it is invertible.

F (h) If two matrices are similar, then any eigenvector of one of the matrices is also an eigenvector of
the other.

T (i) If T : V →W is a linear transformation, then T (~0) =~0.

T (j) Consider the vector space V consisting of continuous functions defined on the interval [0,1]. The

subset consisting of functions f satisfying
∫ 1

0
f dx = 0, is a subspace of V .

F (k) If a system of equations is inconsistent, then the corresponding homogeneous system must have
nontrivial solutions.

T (l) If, at a critical point of the multivariable function f (x,y), the eigenvalues of the matrix

 fxx fxy

fyx fyy


are both positive, then f has a local minimum at that critical point.



2. (26 Points.) Let A be the matrix:

A =


1 2 −1 3 1

2 4 −2 4 6

1 2 −1 3 1

1 2 1 4 6


Think of A as a linear transformation T : R5→ R4 defined by T (~x) = A~x.

(a) Find a basis for the Range of T .

(b) Find a basis for the Null Space of T .

(c) Define the linear transformation L : R4→R5 by L(~x) = AT~x. Find a basis for the Range of L.

Row reduction gives: 
1 2 −1 3 1

0 0 −2 −1 −5

0 0 0 −2 4

0 0 0 0 0

 .

(a) There are pivots in columns 1, 3, and 4 so the first, third, and fourth columns form a basis for the Range of T :


1

2

1

1

 ,

−1

−2

−1

1

 ,


3

4

3

4




.

(b) Solving the homogeneous problem using the row reduction above gives solutions of the form:

−2x2− 21
2 x5

x2

− 7
2 x5

2x5

x5


= x2



−2

1

0

0

0


+ x5



− 21
2

0

− 7
2

2

1


.

So 



−2

1

0

0

0


,



− 21
2

0

− 7
2

2

1




is a basis for the null space of T .

(c) The entries of the nonzero rows of the matrix above form a basis for the Range of L:



1

2

−1

3

1


,



0

0

−2

−1

−5





0

0

0

−2

4




.



3. The following are all eigenvalue/eigenvector problems.

(a) (9 Points.) Find all the eigenvalues of the following matrix. Also, find a basis for each
eigenspace. Is this matrix diagonalizable?

A =


1 0 0

6 −5 −15

0 2 6

 .

(b) (9 Points.) Find all the eigenvalues of the following matrix. Also, find a basis for each
eigenspace. Is this matrix diagonalizable?

B =


3 −2 −1

1 0 −1

1 −2 1

 .

(c) (9 Points.) Let P3 be the vector space of polynomials of degree 3 or less. Find all the eigen-
values of the linear transformation T : P3→ P3 defined by T (p(x)) = p′′(x). Also, find a basis
for each eigenspace.

(a) The characteristic polynomial is: −λ 3 +2λ 2 +λ =−λ (1−λ )2, so the eigenvalues are 0 and 1. Solving A~x =~0
gives the eigenspace corresponding to λ = 0 and its basis:


0

−3

1


 .

Solving (A~−I)x =~0 gives the eigenspace corresponding to λ = 1 and its basis:


0

− 5
2

1


 .

Because the eigenvalue λ = 1 has multiplicity 2 and eigenspace only dimension 1, there cannot be a basis of R3

consisting of eigenvectors, and so this matrix is not diagonalizable.

(b) The characteristic polynomial is: −λ 3+4λ 2−4λ =−λ (2−λ )2, so the eigenvalues are 0 and 2. Solving A~x =~0
gives the eigenspace corresponding to λ = 0 and its basis:


1

1

1


 .

Solving (A−2I)~x =~0 gives the eigenspace corresponding to λ = 2 and its basis:


1

0

1

 ,


2

1

0


 .

This matrix is diagonalizable because putting together our basis vectors for each eigenspace gives us enough
vectors to form a basis for R3.

(c) There are a couple ways to do this one. You can convert the entire problem into a matrix problem by choosing
a basis for P3, for example. However, let’s do this one more directly: λ is an eigenvalue of T means T (p(t)) =
λ p(t). If we write p(t) = a0 +a1t +a2t2 +a3t3, then finding eigenvalues/eigenvectors is the same as solving:

2a2 +6a3t = p′′(t) = T (p(t)) = λ p(t) = λ (a0 +a1t +a2t2 +a3t3).



Matching terms, we get:

2a2 = λa0,

6a3 = λa1,

0 = λa2,

0 = λa3,

For λ = 0, the solutions to this a2 = a3 = 0 while a0 and a1 are free. This tells us the eigenspace corresponding
to λ = 0 is the set of polynomials of the form a0 +a1t, which is spanned by {1, t}.
And if λ 6= 0, the last two equations say that a3 = a2 = 0, which, plugged into the first two, gives a1 = a0 = 0. So
there are no nonzero eigenvalues.



4. The following problems are both computational problems. They are otherwise unrelated.

(a) (12 Points.) Suppose an economy has two sectors, Goods and Services. Each year, Goods
sells 80% of its output to Services and keeps the rest, while Services sells 70% of its output
to Goods and retains the rest. Find equilibrium prices for the annual outputs of the Goods and
Services sectors that make each sector’s income match its expenditures.

(b) (12 Points.) Consider the vector space, P2, of all polynomials of degree 2 of less. Let T : P2→
P2 be the (invertible) linear tranformation defined by T (1) = 1+ 2t + t2, T (t) = 2− t + 3t2,
and T (t2) = t− t2.

Find T−1(1), T−1(t), and T−1(t2).

(a) If we represent Goods with the first coordinate entry of R2 and Services with the second, then finding equilibrium
prices is equivalent to finding an eigenvector corresponding to λ = 1 for the matrix: 1

5
7
10

4
5

3
10

 .
One solution is when Goods is at 7

8 and Services is at 1.

(b) Converting this into a matrix problem is one way to do this. Use
{

1, t, t2} as a basis for P2. Then the linear
transformation T becomes: 

1 2 0

2 −1 1

1 3 −1

 .
Invert this matrix to get: 

− 1
2

1
2

1
2

3
4 − 1

4 − 1
4

7
4 − 1

4 − 5
4

 .
Translating back to polynomials, we have:

T−1(1) =− 1
2 +

3
4 t + 7

4 t2,

T−1(t) = 1
2 −

1
4 t− 1

4 t2,

T−1(t2) = 1
2 −

1
4 t− 5

4 t2.



5. The following problems are both computational problems. They are otherwise unrelated.

(a) (12 Points.) Consider the following vectors in R4:

~b1 =


1

0

−1

3

 , ~b2 =


0

2

3

1

 , ~b3 =


6

1

0

−2

 , ~b4 =


14

−66

41

9

 , and ~v =


2

1

−1

4

 .

The set
{
~b1, ~b2, ~b3, ~b4

}
forms an orthogonal basis for R4. That means ~v can be written as a

linear combination: ~v = c1~b1 + c2~b2 + c3~b3 + c4~b4. Find c2 and c3.

(b) (12 Points.) For the vector space R2, find the change-of-coordinates matrix from the basis
 −1

8

 ,
 −1

−5

 to the basis


 1

4

 ,
 1

1

 .

(a) Because we have an orthogonal basis,

c2 =
~v · ~b2

‖~b2‖
=

3
14

,

c3 =
~v · ~b3

‖~b3‖
=

5
41

.

(b) The columns of the matrix that we want are formed by writing the vectors of the first basis in terms of the second
basis. Doing this (which is equivalent to solving 2×2 systems) gives: −1

8

= 3

 1

4

−4

 1

1

 , and

 −1

5

=−4
3

 1

4

+ 1
3

 1

1

 .
So the change of basis matrix is:  3 − 4

3

−4 1
3

 .



6. The following are all proof-type problems. They are otherwise unrelated.

(a) (8 Points.) Suppose the solutions of a homogeneous system of five linear equations in six un-
knowns are all multiples of one nonzero solution. Will the system necessarily have a solution
for every possible choice of constants on the right sides of the equations? Justify your answer.

(b) (8 Points.) Let A be an n×n matrix that has at least one eigenvalue. Is the set of all eigenvec-
tors of A necessarily a subspace of Rn? If so, prove it. Otherwise provide a counterexample.

(c) (8 Points.) Consider the vector space C of continuous functions defined on all of R. Show
that

f ·g =
∫ 1

0
f (x)g(x)dx

is not an inner product. Note: You’ll probably want to work with functions that have certain
properties. If you cannot come up with the formulas for such functions, you may draw their
graphs instead.

(a) Representing the homogeneous system of equations in matrix form: A~x=~0, the fact that all solutions are multiples
of one nonzero solution means that the nullspace of A is of dimension one. But rankA+dimNullA = 6, so the rank
of A must be five, which means A – as a mapping – must be onto, and so A~x =~b must be always be solvable for
every~b.

(b) The set of all eigenvectors is not necessarily a subspace (Note that the set of all eigenvectors corresponding to
the same eigenvalue is a subspace, however). Any example of a matrix with two distinct eigenvalues will give a
counterexample. For example, consider the matrix: 1 0

0 2

 .

Then ~e1 =

 1

0

 and ~e2 =

 0

1

 are eigenvectors (corresponding to λ = 1 and λ = 2). A(~e1 + ~e2) = ~e1 +2~e2

is clearly not a constant multiple of ~e1 + ~e2 and is thus not an eigenvector of A. Because the sum of these two
eigenvectors is not itself an eigenvector, the set of eigenvectors cannot be a subspace of R2.

(c) This one was supposed to be hard. An inner product must satisfy the property that only the zero vector has length
zero (where the length is, by definition square root of the vector dotted with itself). However, any continuous
function that is zero in the interval [0,1] and has nonzero values somewhere outside that interval will violate this
property (because this proposed inner product only integrates between 0 and 1). For example, this function will
work:

f (x) =

 −x x < 0

0 x≥ 0

This is why every time we discussed inner products on function spaces, we were careful to say that our vector
space was not all of C, but rather C[0,1] – the space of functions defined on the interval [0,1].

Exercise. Show that for the vector space P of polynomials,

f ·g =
∫ 1

0
f (x)g(x)dx

is indeed an inner product. Why does this inner product work for polynomials and not the space of continuous
functions?



7. The following are all proof-type problems. They are otherwise unrelated.

(a) (9 Points.) Assume A is a 7×4 matrix and B is a 4×7 matrix. Show that AB is not invertible.

(b) (9 Points.) Assume T : V →W is a linear transformation between vector spaces V and W .
Show that if {~v1, . . . ~vp} are vectors in V such that {T (~v1), . . .T (~vp)} are linearly independent,
then {~v1, . . . ~vp} is also linearly independent.

For full credit, mark with a star (*) everywhere you use the fact that T is a linear transforma-
tion.

(c) (9 Points.) Let V and W be vector spaces and let T : V →W be a linear transformation. Say
that Z is a subspace of W . Let U be the set of all vectors~x ∈V such that T (~x) ∈ Z. Show that
U is a subspace of V .

For full credit, mark with a star (*) everywhere you use the fact that T is a linear transfor-
mation. Also, mark with two stars (**) everywhere you use the fact that Z is a subspace of
W.

(a) Same problem as on Midterm 2.

(b) Assume we have c1~v1+ · · ·cp~vp =~0. We must show that the only way this can be true is if: c1 = c2 = · · ·= cp = 0.
Apply T to both sides and using the fact that T is a linear transformation (twice):

c1T (~v1)+ · · ·+ cpT (~vp)
(∗)
= T (c1~v1)+ · · ·+T (cp~vp)

(∗)
= T (c1~v1 + · · ·cp~vp) = T (~0)

(∗)
= ~0.

(The last equality uses the fact that T is a linear transformation indirectly.) So we conclude c1T (~v1) + · · ·+
cpT (~vp) =~0, but because the T (~v1), . . .T (~vp) are linearly independent, that implies c1 = c2 = · · · = cp = 0,
which is what we wanted.

(c) We must show that (1), if~x,~y ∈U then~x+~y ∈U, and (2), if c is a scalar and~x ∈U, then c~x ∈U.

For (1), to show, ~x+~y ∈U means we must show T (~x+~y) ∈ Z. Because T is a linear transformation (*), that’s
the same as showing T (~x)+T (~y) ∈ Z. But that’s true because x ∈U and y ∈U mean precisely that T (~x) ∈ Z and
T (~y) ∈ Z, so since Z is a subspace of W (**), we have T (~x)+T (~y) ∈ Z, which is what we wanted.

For (2), to show, c~x∈U means we must show T (c~x)∈ Z. Because T is a linear transformation (*), that’s the same
as showing cT (~x) ∈ Z. But that’s true because x ∈U means precisely that T (~x) ∈ Z, so since Z is a subspace of
W (**), we have cT (~x) ∈ Z, which is what we wanted.
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