Solutions

Name: _____

Student ID No.: _____

Discussion Section: _____

Math 20F Midterm $I_{(ver. a)}$

Winter 2016

Problem	Score
1	/24
2	/24
3	/26
4	/26
Total	/100

1. (24 Points.) The following are True/False questions. For this problem only, you do not have to show any work. There will be no partial credit given for this problem. For this problem:

- A correct answer gives 4 points.
- An incorrect answer gives 0 points.
- If you leave the space blank, you receive 2 points.
- **<u>F</u>** (a) If $T : \mathbf{R}^{\mathbf{n}} \to \mathbf{R}^{\mathbf{m}}$ and $T(\vec{0}) = \vec{0}$, then T is a linear transformation.
- <u>T</u> (b) Assume *A* is an $m \times n$ matrix. If $A\vec{x} = \vec{b}$ has a solution for every vector \vec{b} then the columns of *A* span $\mathbf{R}^{\mathbf{m}}$.
- T (c) If the Row Echelon form of A has a pivot in every row then $A\vec{x} = \vec{b}$ has a solution for every vector \vec{b} .
- **F** (d) Whenever $\vec{x_1}$ and $\vec{x_2}$ are two solutions to $A\vec{x} = \vec{b}$, then $\vec{x_1} + \vec{x_2}$ is also a solution to $A\vec{x} = \vec{b}$.
- <u>T</u> (e) If the homogeneous problem: $A\vec{x} = \vec{0}$ has only the trivial solution, then the problem $A\vec{x} = \vec{b}$ either has no solutions or has exactly one solution.
- T (f) If the Row Echelon form of the matrix A has a column without a pivot, then the problem $A\vec{x} = \vec{0}$ has many solutions.

2. Each statement below is either true (in all cases) or false (in at least one case). If false, construct a counterexample. If true, give a justification using the definition of "linearly independent."

- (a) (8 Points.) If v_1, \ldots, v_4 are in \mathbb{R}^5 and $\{v_1, v_2, v_3\}$ is linearly dependent then $\{v_1, v_2, v_3, v_4\}$ is linearly dependent.
- (b) (8 Points.) If v_1, \ldots, v_4 are in \mathbb{R}^5 and v_1 is *not* a linear combination of $\{v_2, v_3, v_4\}$, then $\{v_1, v_2, v_3, v_4\}$ is linearly independent.
- (c) (8 Points.) If v_1, \ldots, v_4 are linearly independent vectors in \mathbb{R}^5 , then $\{v_1, v_2, v_3\}$ is also linearly independent.
- (a) True. $\{v_1, v_2, v_3\}$ linearly dependent means there exists weights a_1 , a_2 , and a_3 not all zero such that

 $a_1v_1 + a_2v_2 + a_3v_3 = 0.$

This means

 $a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 = 0,$

for $a_4 = 0$ and the same a_1 , a_2 , a_3 as above. Since not all of a_1 , a_2 , and a_3 are zero, that means not all of a_1 , a_2 , a_3 , a_4 are zero. And that means $\{v_1, v_2, v_3, v_4\}$ are linearly dependent.

- (b) False. Here's a simple counterexample: choose $v_1 = e_1$ and $v_2 = v_3 = v_4 = e_2$. Then v_1 is not a linear combination of $\{v_1, v_2, v_3\}$, yet $\{v_1, v_2, v_3, v_4\}$ are linearly dependent (because, for example, $0v_1 + 0v_2 + v_3 v_4 = 0$).
- (c) True. To show that $\{v_1, v_2, v_3\}$ is linearly independent, we must show that if $a_1v_1 + a_2v_2 + a_3v_3 = 0$, then $a_1 = a_2 = a_3 = 0$ ("only the trivial solution...").

So assume $a_1v_1 + a_2v_2 + a_3v_3 = 0$. Then $a_1v_1 + a_2v_2 + a_3v_3 + 0v_4 = 0$ must also be true (we simply added 0 to the left hand side). But because $\{v_1, v_2, v_3, v_4\}$ are linearly independent, that means all the weights in this expression must be zero.

In particular, $a_1 = a_2 = a_3 = 0$. Which is what we wanted.

3. (25 Points.) Find the general flow pattern of the network shown in the figure.

The flow into each corner must equal the flow out. This gives us the system of equations:

$$x_{1}+ = x_{5},$$

 $x_{4}+x_{5} = x_{3},$
 $x_{3} = x_{2},$
 $x_{2} = x_{1}+x_{4},$

which is equivalent to the homogeneous system:

$$x_1 - x_5 = 0,$$

$$-x_3 + x_4 + x_5 = 0,$$

$$-x_2 + x_3 = 0,$$

$$-x_1 + x_2 - x_4 = 0.$$

Solving this system gives $x_1 = x_5$, $x_2 = x_4 + x_5$, $x_3 = x_4 + x_5$, $x_4 =$ free, and $x_5 =$ free.

- 4. Each of the following two parts are about linear transformations (but are otherwise not related).
 - (a) (13 Points.) Consider the transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$T\left(\left[\begin{array}{c}x_1\\x_2\\x_3\end{array}\right]\right) = \left[\begin{array}{c}x_1x_2\\x_3\end{array}\right].$$

Is T a linear transformation? You must justify your answer using the definition of linear transformation.

(b) (13 Points.) Assume $U : \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation where

$$U\left(\left[\begin{array}{c}3\\0\end{array}\right]\right) = \left[\begin{array}{c}4\\3\\0\end{array}\right] \quad \text{and} \quad U\left(\left[\begin{array}{c}1\\2\end{array}\right]\right) = \left[\begin{array}{c}0\\2\\1\end{array}\right].$$

Find $U\left(\left[\begin{array}{c}14\\4\end{array}\right]\right)$.

(a) T is not a linear transformation. If it were, it would have to satisfy:

$$T\left(c\left[\begin{array}{c}x_1\\x_2\\x_3\end{array}\right]\right)=cT\left(\left[\begin{array}{c}x_1\\x_2\\x_3\end{array}\right]\right).$$

But the left hand side is equal to $\begin{bmatrix} c^2 x_1 x_2 \\ c x_3 \end{bmatrix}$, while the left hand side is equal to $\begin{bmatrix} x_1 x_2 \\ x_3 \end{bmatrix}$. For these two

vectors to be equal, we'd need $cx_1x_2 = c^2x_1x_2$ for all possible choices of c, x_1 , and x_2 . Clearly this isn't true whenever $c \neq 1$ and x_1 and x_2 not both zero: for example, with c = 2, $x_1 = 1$, and $x_2 = 1$ (x_3 can be anything), we would not have equality. In short, we have

$$T\left(2\left[\begin{array}{c}1\\1\\0\end{array}\right]\right)=T\left(\left[\begin{array}{c}2\\2\\0\end{array}\right]\right)=\left[\begin{array}{c}4\\0\end{array}\right],$$

while:

$$2T\left(\left[\begin{array}{c}1\\1\\0\end{array}\right]\right)=2\left[\begin{array}{c}1\\0\end{array}\right]=\left[\begin{array}{c}2\\0\end{array}\right]$$

(Note that T(u+v) = T(u) + T(v) is generally not true either.)

(b) We first write
$$\begin{bmatrix} 14\\4 \end{bmatrix}$$
 as a linear combination of $\begin{bmatrix} 3\\0 \end{bmatrix}$ and $\begin{bmatrix} 1\\2 \end{bmatrix}$. This involves solving the system of equations

$$\begin{bmatrix} 14\\4 \end{bmatrix} = c_1 \begin{bmatrix} 3\\0 \end{bmatrix} + c_2 \begin{bmatrix} 1\\2 \end{bmatrix}.$$
The solution is:

$$\begin{bmatrix} 14\\4 \end{bmatrix} = 4 \begin{bmatrix} 3\\0 \end{bmatrix} + 2 \begin{bmatrix} 1\\2 \end{bmatrix}.$$

Therefore, because *U* is a linear transformation, we have:

$$U\left(\left[\begin{array}{c}14\\4\end{array}\right]\right) = U\left(4\left[\begin{array}{c}3\\0\end{array}\right] + 2\left[\begin{array}{c}1\\2\end{array}\right]\right) = 4U\left(\left[\begin{array}{c}3\\0\end{array}\right]\right) + 2U\left(\left[\begin{array}{c}1\\2\end{array}\right]\right) = 4\left[\begin{array}{c}4\\3\\0\end{array}\right] + 2\left[\begin{array}{c}0\\2\\1\end{array}\right] = \left[\begin{array}{c}16\\16\\2\end{array}\right].$$