Solutions
Name: \qquad

Student ID No.:

Discussion Section:

Math 20F Midterm $I_{\text {(ee a) }}$

Winter 2016

Problem	Score
1	124
2	124
3	126
4	126
Total	1100

1. (24 Points.) The following are True/False questions. For this problem only, you do not have to show any work. There will be no partial credit given for this problem. For this problem:

- A correct answer gives 4 points.
- An incorrect answer gives 0 points.
- If you leave the space blank, you receive 2 points.
\qquad (a) If $T: \mathbf{R}^{\mathbf{n}} \rightarrow \mathbf{R}^{\mathbf{m}}$ and $T(\overrightarrow{0})=\overrightarrow{0}$, then T is a linear transformation.
\qquad (b) Assume A is an $m \times n$ matrix. If $A \vec{x}=\vec{b}$ has a solution for every vector \vec{b} then the columns of A $\operatorname{span} \mathbf{R}^{\mathbf{m}}$.
\qquad (c) If the Row Echelon form of A has a pivot in every row then $A \vec{x}=\vec{b}$ has a solution for every vector \vec{b}.
\qquad (d) Whenever $\overrightarrow{x_{1}}$ and $\overrightarrow{x_{2}}$ are two solutions to $A \vec{x}=\vec{b}$, then $\overrightarrow{x_{1}}+\overrightarrow{x_{2}}$ is also a solution to $A \vec{x}=\vec{b}$.
\qquad (e) If the homogeneous problem: $A \vec{x}=\overrightarrow{0}$ has only the trivial solution, then the problem $A \vec{x}=\vec{b}$ either has no solutions or has exactly one solution.
\qquad (f) If the Row Echelon form of the matrix A has a column without a pivot, then the problem $A \vec{x}=\overrightarrow{0}$ has many solutions.

2. Each statement below is either true (in all cases) or false (in at least one case). If false, construct a counterexample. If true, give a justification using the definition of "linearly independent."
(a) (8 Points.) If v_{1}, \ldots, v_{4} are in $\mathbf{R}^{\mathbf{5}}$ and $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly dependent then $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is linearly dependent.
(b) (8 Points.) If v_{1}, \ldots, v_{4} are in $\mathbf{R}^{\mathbf{5}}$ and v_{1} is not a linear combination of $\left\{v_{2}, v_{3}, v_{4}\right\}$, then $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is linearly independent.
(c) (8 Points.) If v_{1}, \ldots, v_{4} are linearly independent vectors in $\mathbf{R}^{\mathbf{5}}$, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is also linearly independent.
(a) True. $\left\{v_{1}, v_{2}, v_{3}\right\}$ linearly dependent means there exists weights a_{1}, a_{2}, and a_{3} not all zero such that

$$
a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=0
$$

This means

$$
a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+a_{4} v_{4}=0
$$

for $a_{4}=0$ and the same a_{1}, a_{2}, a_{3} as above. Since not all of a_{1}, a_{2}, and a_{3} are zero, that means not all of of a_{1}, a_{2}, a_{3}, a_{4} are zero. And that means $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ are linearly dependent.
(b) False. Here's a simple counterexample: choose $v_{1}=e_{1}$ and $v_{2}=v_{3}=v_{4}=e_{2}$. Then v_{1} is not a linear combination of $\left\{v_{1}, v_{2}, v_{3}\right\}$, yet $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ are linearly dependent (because, for example, $0 v_{1}+0 v_{2}+v_{3}-v_{4}=0$).
(c) True. To show that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent, we must show that if $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=0$, then $a_{1}=$ $a_{2}=a_{3}=0$ ("only the trivial solution...").
So assume $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=0$. Then $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+0 v_{4}=0$ must also be true (we simply added 0 to the left hand side). But because $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ are linearly independent, that means all the weights in this expression must be zero.
In particular, $a_{1}=a_{2}=a_{3}=0$. Which is what we wanted.
3. (25 Points.) Find the general flow pattern of the network shown in the figure.

The flow into each corner must equal the flow out. This gives us the system of equations:

$$
\begin{aligned}
x_{1}+ & =x_{5}, \\
x_{4}+x_{5} & =x_{3}, \\
x_{3} & =x_{2}, \\
x_{2} & =x_{1}+x_{4},
\end{aligned}
$$

which is equivalent to the homogeneous system:

$$
\begin{aligned}
x_{1}-x_{5} & =0 \\
-x_{3}+x_{4}+x_{5} & =0 \\
-x_{2}+x_{3} & =0 \\
-x_{1}+x_{2}-x_{4} & =0
\end{aligned}
$$

Solving this system gives $x_{1}=x_{5}, x_{2}=x_{4}+x_{5}, x_{3}=x_{4}+x_{5}, x_{4}=$ free, and $x_{5}=$ free.
4. Each of the following two parts are about linear transformations (but are otherwise not related).
(a) (13 Points.) Consider the transformation $T: \mathbf{R}^{\mathbf{3}} \rightarrow \mathbf{R}^{\mathbf{2}}$ defined by

$$
T\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1} x_{2} \\
x_{3}
\end{array}\right]
$$

Is T a linear transformation? You must justify your answer using the definition of linear transformation.
(b) (13 Points.) Assume $U: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}^{\mathbf{3}}$ is a linear transformation where

$$
U\left(\left[\begin{array}{l}
3 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
4 \\
3 \\
0
\end{array}\right] \quad \text { and } \quad U\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]
$$

Find $U\left(\left[\begin{array}{c}14 \\ 4\end{array}\right]\right)$.
(a) T is not a linear transformation. If it were, it would have to satisfy:

$$
T\left(c\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=c T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)
$$

But the left hand side is equal to $\left[\begin{array}{c}c^{2} x_{1} x_{2} \\ c x_{3}\end{array}\right]$, while the left hand side is equal to $c\left[\begin{array}{c}x_{1} x_{2} \\ x_{3}\end{array}\right]$. For these two vectors to be equal, we'd need $c x_{1} x_{2}=c^{2} x_{1} x_{2}$ for all possible choices of c, x_{1}, and x_{2}. Clearly this isn't true whenever $c \neq 1$ and x_{1} and x_{2} not both zero: for example, with $c=2, x_{1}=1$, and $x_{2}=1$ (x_{3} can be anything), we would not have equality. In short, we have

$$
T\left(2\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
4 \\
0
\end{array}\right]
$$

while:

$$
2 T\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right)=2\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
$$

(Note that $T(u+v)=T(u)+T(v)$ is generally not true either.)
(b) We first write $\left[\begin{array}{l}14 \\ 4\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}3 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$. This involves solving the system of equations

$$
\left[\begin{array}{c}
14 \\
4
\end{array}\right]=c_{1}\left[\begin{array}{l}
3 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

The solution is:

$$
\left[\begin{array}{c}
14 \\
4
\end{array}\right]=4\left[\begin{array}{l}
3 \\
0
\end{array}\right]+2\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Therefore, because U is a linear transformation, we have:

$$
U\left(\left[\begin{array}{c}
14 \\
4
\end{array}\right]\right)=U\left(4\left[\begin{array}{l}
3 \\
0
\end{array}\right]+2\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=4 U\left(\left[\begin{array}{l}
3 \\
0
\end{array}\right]\right)+2 U\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=4\left[\begin{array}{l}
4 \\
3 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
16 \\
16 \\
2
\end{array}\right]
$$

