Solutions

Name: _____

Student ID No.: _____

Discussion Section: _____

Math 20F Midterm II_(ver. a)

Winter 2016

Problem	Score		
1	/24		
2	/25		
3	/27		
4	/24		
Total	/100		

1. (24 Points.) The following are True/False questions. For this problem only, you do not have to show any work. There will be no partial credit given for this problem. For this problem:

- A correct answer gives 4 points.
- An incorrect answer gives 0 points.
- If you leave the space blank, you receive 2 points.
- T (a) If a vector space V has p linearly independent vectors, then it's impossible for a set of fewer than p vectors to span V.
- F (b) If A is an $m \times n$ matrix whose columns are linearly dependent, then the column space of A must have dimension less than m.

<u>F</u> (c) Let W be the subset of \mathbb{R}^2 consisting of all vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ such that $xy \le 0$. W is a subspace of \mathbb{R}^2 .

- <u>T</u> (d) Let A be an $n \times n$ matrix. If there is a \vec{b} such that $A\vec{x} = \vec{b}$ has no solutions, then A cannot be one-to-one.
- T (e) Let *A* be a matrix. Any column of *A* that does not have a pivot (when *A* is put into Row Echelon form) can be written as a linear combination of the columns of *A* that do have pivots.
- <u>F</u> (f) Let $C(\mathbf{R})$ be the vector space of all continuous functions defined on the real line. Let *H* be the subset consisting of all continuous functions f(x) such that $f(3) \ge 0$. *H* is a subspace of $C(\mathbf{R})$.

2. (25 Points.) Given below is the *LU*-factorization of a matrix *A*.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -3 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 & 2 \\ 0 & 3 & -7 \\ 0 & 0 & 5 \end{bmatrix}.$$

Solve $A\vec{x} = \vec{b}$, where

$$\vec{b} = \begin{bmatrix} 9\\25\\-10 \end{bmatrix}.$$

In order to receive credit, you must use the LU-factorization to solve this problem. First solve:

THIST SOLVE.	_	_		_	_
	1	0 0	y1	9	
	2	1 0	y ₂ =	= 25	
	1	-3 1	<i>y</i> 3	-10	
The solution is:				_	
		<i>y</i> 1	9		
		<i>y</i> 2	= 7		
		<i>y</i> 3	20		
Plug this into:		L J	L .	1	
	4	3 2	$\begin{bmatrix} x_1 \end{bmatrix}$	$\begin{bmatrix} y_1 \end{bmatrix}$	
	0	3 -7	x ₂ =	$=$ y_2	,
	0	0 5	ra	v2	
and solve again for the final answer	L	-			
and solve again for the final answer.		Γ.,]	[17	1	
			$-\frac{1}{2}$		
		<i>x</i> ₂	$= \left \frac{35}{3} \right $	•	
		x ₃	4		

- **3.** The following are all proof-type problems. They are otherwise unrelated.
 - (a) (9 Points.) Let *T* be a linear transformation from a vector space *V* to a vector space *W*. Show that the kernel of *T* is a subspace of *V*. You must note every place where you use the fact that *T* is a linear transformation in order to receive full credit.
 - (b) (9 Points.) Show that the vector space $C(\mathbf{R})$ of all continuous functions defined on the real line is infinite-dimensional. *Write down the statements of any Theorems you use.*
 - (c) (9 Points.) Assume A is a 6×4 matrix and B is a 4×6 matrix. Show that AB is not invertible.
 - (a) (1) Whenever \vec{u} and \vec{v} are in the kernel of T, we have

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v}) = \vec{0} + \vec{0} = \vec{0}.$$

So $\vec{u} + \vec{v}$ is also in the kernel of T ("the kernel is closed under addition"). Note that in the first equality we used the fact that T is a linear transformation.

(2) If $c \in \mathbf{R}$ and \vec{u} is in the kernel of T, then

$$T(c\vec{u}) = cT(\vec{u}) = c\vec{0} = \vec{0}.$$

So $c\vec{u}$ is in the kernel of T ("the kernel is closed under scalar multiplication"). Note that in the first equality we used the fact that T is a linear transformation.

- (1) and (2) together tells us the kernel of T is a subspace of V.
- (b) You can write this one up in many different ways, but the general idea is that the vector space of polynomials is infinite dimensional and is a subspace of $C(\mathbf{R})$, therefore $C(\mathbf{R})$ must be infinite dimensional as well (a subspace can't be "bigger" than the vector space it lives in).

Here's one way to write it up:

If $C(\mathbf{R})$ were finite dimensional (of dimension n), then any set of vectors with more than n vectors must be linearly dependent. ("If V is a finite dimensional vector space, then any set of more than dimV vectors must be linearly dependent"). However, $\{1, t, t^2, ..., t^n\}$ is a linearly independent set in $C(\mathbf{R})$ of n + 1 elements. Therefore $C(\mathbf{R})$ can't be finite dimensional.

How do we know the above set is linearly independent? Assume

$$a_0 + a_1t + \dots + a_nt^n = 0.$$

For our set to be linearly independent, we need to show each $a_i = 0$. Take the biggest k such that $a_k \neq 0$ (if every $a_i = 0$, then we're done). Divide through by $a_k t^k$, giving us:

$$\frac{a_0}{a_k}\frac{1}{t^k} + \frac{a_1}{a_k}\frac{1}{t^{k-1}} + \dots + \frac{a_{k-1}}{a_k}\frac{1}{t} + 1 = 0.$$

Choose t so large that every term in the sum above (besides the last term) has absolute value less than $\frac{1}{k}$ (think about why this is possible). Then for that t, the left hand side can't be equal to zero. So it must be that all the coefficients a_i are equal to zero.

Note that you did not have to be so detailed on the exam.

(c) There are many ways to do this one. Here's one:

Think of AB as the composition of two linear transformations: $B : \mathbb{R}^6 \to \mathbb{R}^4$, followed by $A : \mathbb{R}^4 \to \mathbb{R}^6$. With this point of view, it's easy to see that if B is not one-to-one, then the composition can't be either. So the problem boils down to showing that B is not one-to-one. But B has more columns than rows so it can't be one-to-one.

Here it is in more detail:

We'll show AB is not one-to-one. Because B is a linear transformation from a "bigger" vector space to a "smaller" one, it can't be one-to-one: More precisely, you can say that its Row Echelon form must have at least 2 columns without pivots so there are many solutions to $B\vec{x} = \vec{0}$, so it's not one-to-one. So there are two different vectors $\vec{v_1}$ and $\vec{v_2}$ such that $B\vec{v_1} = B\vec{v_2}$. Applying A to both sides, we get $AB\vec{v_1} = AB\vec{v_2}$. Because $\vec{v_1} \neq \vec{v_2}$, AB is not one-to-one, so it can't be invertible.

Note that you can also do this problem by showing AB is not onto, which boils down to showing A is not onto, which boils down to the fact that A has more rows than columns.

- 4. The following problems are computational. They are otherwise unrelated.
 - (a) (12 Points.) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that first reflects through the x_1 -axis, then rotates $\frac{\pi}{4}$ radians counterclockwise. Find the standard matrix of this linear transformation.
 - (b) (12 Points.) Determine whether the polynomials $1 + 2x + x^2 + x^3$, $-1 + 8x 3x^2 + x^3$, and $2 x + 3x^2 + x^3$. are linearly independent (in the vector space **P**₃).

(a) $\vec{e_1}$ first goes (under reflection) to itself, and then to $\begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}$. $\vec{e_2}$ first goes (under reflection) to $-\vec{e_2}$, and then to $\begin{bmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{bmatrix}$. So the standard matrix is: $\begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix}$ (a) This is most easily done using coordinates. Using the basis $\{1, x, x^2, x^3\}$ we know that our polynomials are linearly

(a) This is most easily done using coordinates. Using the basis $\{1, x, x^2, x^3\}$ we know that our polynomials are linearly independent if and only if the vectors:

$$\left\{ \begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\8\\-3\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\3\\1 \end{bmatrix} \right\}$$

are linearly independent. Putting these into a matrix and row reducing, we get:

$$\begin{bmatrix} 1 & -1 & 2 \\ 2 & 8 & -1 \\ 1 & -3 & 3 \\ 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 \\ 0 & 10 & -5 \\ 0 & -2 & 1 \\ 0 & 2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 \\ 0 & 10 & -5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

There is a column without a pivot, so the homogeneous problem has many solutions, so the vectors (and hence the polynomials) are not linearly independent.