Solutions
Name: \qquad

Student ID No.:

Discussion Section:

Math 20F Midterm II ${ }_{\text {cra }}$)

Winter 2016

Problem	Score
1	124
2	125
3	127
4	124
Total	1100

1. (24 Points.) The following are True/False questions. For this problem only, you do not have to show any work. There will be no partial credit given for this problem. For this problem:

- A correct answer gives 4 points.
- An incorrect answer gives 0 points.
- If you leave the space blank, you receive 2 points.
\qquad (a) If a vector space V has p linearly independent vectors, then it's impossible for a set of fewer than p vectors to span V.
\qquad (b) If A is an $m \times n$ matrix whose columns are linearly dependent, then the column space of A must have dimension less than m.
\qquad (c) Let W be the subset of $\mathbf{R}^{\mathbf{2}}$ consisting of all vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ such that $x y \leq 0$. W is a subspace of \mathbf{R}^{2}.
\qquad (d) Let A be an $n \times n$ matrix. If there is a \vec{b} such that $A \vec{x}=\vec{b}$ has no solutions, then A cannot be one-to-one.
\qquad (e) Let A be a matrix. Any column of A that does not have a pivot (when A is put into Row Echelon form) can be written as a linear combination of the columns of A that do have pivots.

F (f) Let $C(\mathbf{R})$ be the vector space of all continuous functions defined on the real line. Let H be the subset consisting of all continuous functions $f(x)$ such that $f(3) \geq 0$. H is a subspace of $C(\mathbf{R})$.
2. (25 Points.) Given below is the $L U$-factorization of a matrix A.

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -3 & 1
\end{array}\right]\left[\begin{array}{rrr}
4 & 3 & 2 \\
0 & 3 & -7 \\
0 & 0 & 5
\end{array}\right] .
$$

Solve $A \vec{x}=\vec{b}$, where

$$
\vec{b}=\left[\begin{array}{r}
9 \\
25 \\
-10
\end{array}\right]
$$

In order to receive credit, you must use the $L U$-factorization to solve this problem.
First solve:

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -3 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{r}
9 \\
25 \\
-10
\end{array}\right]
$$

The solution is:

$$
\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{c}
9 \\
7 \\
20
\end{array}\right]
$$

Plug this into:

$$
\left[\begin{array}{rrr}
4 & 3 & 2 \\
0 & 3 & -7 \\
0 & 0 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

and solve again for the final answer:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-\frac{17}{2} \\
\frac{35}{3} \\
4
\end{array}\right]
$$

3. The following are all proof-type problems. They are otherwise unrelated.

(a) (9 Points.) Let T be a linear transformation from a vector space V to a vector space W. Show that the kernel of T is a subspace of V. You must note every place where you use the fact that T is a linear transformation in order to receive full credit.
(b) (9 Points.) Show that the vector space $C(\mathbf{R})$ of all continuous functions defined on the real line is infinite-dimensional. Write down the statements of any Theorems you use.
(c) (9 Points.) Assume A is a 6×4 matrix and B is a 4×6 matrix. Show that $A B$ is not invertible.
(a) (1) Whenever \vec{u} and \vec{v} are in the kernel of T, we have

$$
T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})=\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0} .
$$

So $\vec{u}+\vec{v}$ is also in the kernel of T ("the kernel is closed under addition"). Note that in the first equality we used the fact that T is a linear transformation.
(2) If $c \in \mathbf{R}$ and \vec{u} is in the kernel of T, then

$$
T(c \vec{u})=c T(\vec{u})=c \overrightarrow{0}=\overrightarrow{0} .
$$

So c \vec{u} is in the kernel of T ("the kernel is closed under scalar multiplication"). Note that in the first equality we used the fact that T is a linear transformation.
(1) and (2) together tells us the kernel of T is a subspace of V.
(b) You can write this one up in many different ways, but the general idea is that the vector space of polynomials is infinite dimensional and is a subspace of $C(\mathbf{R})$, therefore $C(\mathbf{R})$ must be infinite dimensional as well (a subspace can't be "bigger" than the vector space it lives in).

Here's one way to write it up:
If $C(\mathbf{R})$ were finite dimensional (of dimension n), then any set of vectors with more than n vectors must be linearly dependent. ("If V is a finite dimensional vector space, then any set of more than dimV vectors must be linearly dependent"). However, $\left\{1, t, t^{2}, \ldots, t^{n}\right\}$ is a linearly independent set in $C(\mathbf{R})$ of $n+1$ elements. Therefore $C(\mathbf{R})$ can't be finite dimensional.
How do we know the above set is linearly independent? Assume

$$
a_{0}+a_{1} t+\cdots+a_{n} t^{n}=0 .
$$

For our set to be linearly independent, we need to show each $a_{i}=0$. Take the biggest k such that $a_{k} \neq 0$ (if every $a_{i}=0$, then we're done). Divide through by $a_{k} t^{k}$, giving us.

$$
\frac{a_{0}}{a_{k}} \frac{1}{t^{k}}+\frac{a_{1}}{a_{k}} \frac{1}{t^{k-1}}+\cdots+\frac{a_{k-1}}{a_{k}} \frac{1}{t}+1=0 .
$$

Choose t so large that every term in the sum above (besides the last term) has absolute value less than $\frac{1}{k}$ (think about why this is possible). Then for that t, the left hand side can't be equal to zero. So it must be that all the coefficients a_{i} are equal to zero.

Note that you did not have to be so detailed on the exam.
(c) There are many ways to do this one. Here's one:

Think of $A B$ as the composition of two linear transformations: $B: \mathbf{R}^{\mathbf{6}} \rightarrow \mathbf{R}^{\mathbf{4}}$, followed by $A: \mathbf{R}^{\mathbf{4}} \rightarrow \mathbf{R}^{\mathbf{6}}$. With this point of view, it's easy to see that if B is not one-to-one, then the composition can't be either. So the problem boils down to showing that B is not one-to-one. But B has more columns than rows so it can't be one-to-one.

Here it is in more detail:
We'll show $A B$ is not one-to-one. Because B is a linear transformation from a "bigger" vector space to a "smaller" one, it can't be one-to-one: More precisely, you can say that its Row Echelon form must have at least 2 columns without pivots so there are many solutions to $B \vec{x}=\overrightarrow{0}$, so it's not one-to-one. So there are two different vectors $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ such that $B \overrightarrow{v_{1}}=B \overrightarrow{v_{2}}$. Applying A to both sides, we get $A B \overrightarrow{v_{1}}=A B \overrightarrow{v_{2}}$. Because $\overrightarrow{v_{1}} \neq \overrightarrow{v_{2}}$, $A B$ is not one-to-one, so it can't be invertible.

Note that you can also do this problem by showing $A B$ is not onto, which boils down to showing A is not onto, which boils down to the fact that A has more rows than columns.
4. The following problems are computational. They are otherwise unrelated.
(a) (12 Points.) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a linear transformation that first reflects through the x_{1}-axis, then rotates $\frac{\pi}{4}$ radians counterclockwise. Find the standard matrix of this linear transformation.
(b) (12 Points.) Determine whether the polynomials $1+2 x+x^{2}+x^{3},-1+8 x-3 x^{2}+x^{3}$, and $2-x+3 x^{2}+x^{3}$. are linearly independent (in the vector space \mathbf{P}_{3}).
(a) \vec{e}_{1} first goes (under reflection) to itself, and then to $\left[\begin{array}{c}\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2}\end{array}\right] . \vec{e}_{2}$ first goes (under reflection) to $-\vec{e}_{2}$, and then to $\left[\begin{array}{r}\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2}\end{array}\right]$. So the standard matrix is:

$$
\left[\begin{array}{rr}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}
\end{array}\right]
$$

(a) This is most easily done using coordinates. Using the basis $\left\{1, x, x^{2}, x^{3}\right\}$ we know that our polynomials are linearly independent if and only if the vectors:

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right],\left[\begin{array}{r}
-1 \\
8 \\
-3 \\
1
\end{array}\right],\left[\begin{array}{r}
2 \\
-1 \\
3 \\
1
\end{array}\right]\right\}
$$

are linearly independent. Putting these into a matrix and row reducing, we get:

$$
\left[\begin{array}{rrr}
1 & -1 & 2 \\
2 & 8 & -1 \\
1 & -3 & 3 \\
1 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -1 & 2 \\
0 & 10 & -5 \\
0 & -2 & 1 \\
0 & 2 & -1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -1 & 2 \\
0 & 10 & -5 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

There is a column without a pivot, so the homogeneous problem has many solutions, so the vectors (and hence the polynomials) are not linearly independent.

