Name: _____ PID: _____

Instructions

- 1. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
- 2. You may use one handwritten page of notes, but no books or other assistance during this exam.
- 3. Read each question carefully and answer each question completely.
- 4. Show all of your work. No credit will be given for unsupported answers, even if correct.
- 5. Write your Name at the top of each page.
- (1 point) 1. Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
- (6 points) 2. Determine if the following system of linear equations is consistent or not. If the system is consistent, describe the solution set by using parametric form.

$$\begin{cases} x_1 & +x_3 & +x_4 & -3x_5 & = -2 \\ -x_1 & +x_2 & -10x_3 & -x_4 & +4x_5 & = 7 \\ & -4x_2 & +36x_3 & +x_4 & -3x_5 & = -21 \end{cases}$$

Sol:

$$\begin{bmatrix} 1 & 0 & 1 & 1 & -3 & -2 \\ -1 & 1 & -10 & -1 & 4 & 7 \\ 0 & -4 & 36 & 1 & -3 & -21 \end{bmatrix} \sim_{\text{pivot at (1,1)}}^{r_2 \to r_2 + r_1} \begin{bmatrix} 1 & 0 & 1 & 1 & -3 & -2 \\ 0 & 1 & -9 & 0 & 1 & 5 \\ 0 & -4 & 36 & 1 & -3 & -21 \end{bmatrix}$$
$$\sim_{\text{pivot at (2,2)}}^{r_3 \to r_3 + 4 r_2} \begin{bmatrix} 1 & 0 & 1 & 1 & -3 & -2 \\ 0 & 1 & -9 & 0 & 1 & 5 \\ 0 & 0 & 0 & 1 & 1 & -1 \end{bmatrix}$$
$$\sim_{\text{pivot at (3,4)}}^{r_1 \to r_1 - r_3} \begin{bmatrix} 1 & 0 & 1 & 0 & -4 & -1 \\ 0 & 1 & -9 & 0 & 1 & 5 \\ 0 & 0 & 0 & 1 & 1 & -1 \end{bmatrix}$$

The general solution of the linear system is:

-1		$\begin{bmatrix} -2 \end{bmatrix}$		[3]	
5		14		4	
0	$+x_{3}$	1	$+x_{5}$	0	, where x_3 and
-1		-1		-2	
0		0		1	

 x_5 are free.

ver. A (page 2 of 9)

3. Given that
$$A = [\mathbf{a}_1 \ \mathbf{a}_2 \cdots \mathbf{a}_6] = \begin{bmatrix} 1 & 1 & 0 & 3 & -2 & 3 \\ -4 & -5 & 0 & -12 & 9 & -13 \\ -1 & 4 & -1 & 4 & -2 & -7 \\ -2 & 3 & -1 & 1 & 1 & -12 \end{bmatrix}$$
 is row equivalent to $B = \begin{bmatrix} 1 & 0 & 0 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & -7 & 0 & 7 \\ 0 & 0 & 0 & 0 & 1 & -2 \end{bmatrix}$. Let H be the subspace of \mathbb{R}^4 spanned by $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$

Name: _____

and K be the subspace of \mathbb{R}^4 spanned by $\{\mathbf{a}_4, \mathbf{a}_5, \mathbf{a}_6\}$. Find a basis for each of the following subspaces.

- (3 points) (a) $\operatorname{Row}(A)^{\perp}$, the orthogonal complement of the row space of A.
- (2 points) (b) H + K, the sum of the two subspaces H and K.
- (2 points) (c) $H \cap K$, the intersection of the two subspaces H and K.

Sol: (a) The basis of Row
$$(A)^{\perp}$$
 is $\left\{ \begin{bmatrix} 0\\1\\-7\\0\\2\\1 \end{bmatrix} \begin{bmatrix} -3\\0\\7\\1\\0\\0 \end{bmatrix} \right\}$
(b) The basis of $H + K$ is $\left\{ \begin{bmatrix} 1\\-4\\-1\\-2 \end{bmatrix} \begin{bmatrix} 1\\-5\\4\\3 \end{bmatrix} \begin{bmatrix} 0\\0\\-1\\-1 \end{bmatrix} \begin{bmatrix} -2\\9\\-2\\1 \end{bmatrix} \right\}$
(c) The basis of $H \cap K$ is $\{\mathbf{a}_4, 2\mathbf{a}_5 + \mathbf{a}_6\}$, or $\left\{ \begin{bmatrix} 3\\-12\\4\\1 \end{bmatrix} \begin{bmatrix} -1\\5\\-11\\-10 \end{bmatrix} \right\}$

Name: _____

- 4. Let T be the linear transformation from \mathbb{R}^2 to \mathbb{R}^2 defined by $T(a_0, a_1) = (2a_0 2a_1, 2a_0 + a_1)$. Let S be the parallelogram with vertices (1, -2), (3, 1), (4, 5), (6, 8).
- (2 points) (a) Find the standard matrix of T.
- (2 points) (b) Compute the area of S.
- (2 points) (c) Compute the area of T(S).

Sol: (a)
$$T = \begin{bmatrix} 2 & -2 \\ 2 & 1 \end{bmatrix}$$

(b) $Area = \begin{vmatrix} 2 & 3 \\ 3 & 7 \end{vmatrix} = 5$
(c) $Area = \begin{vmatrix} 2 & -2 \\ 2 & 1 \end{vmatrix} \cdot \begin{vmatrix} 2 & 3 \\ 3 & 7 \end{vmatrix} = 6 \cdot 5 = 30$

ver. A (page 4 of 9)

```
Name: _____
```

(6 points) 5. Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3\}$ be two bases of \mathbb{R}^3 , where

$$\begin{bmatrix} \mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ -2 & -3 & -4 \\ -5 & -3 & -2 \end{bmatrix}, \quad \begin{bmatrix} \mathbf{c}_1 \ \mathbf{c}_2 \ \mathbf{c}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ -3 & -4 & -3 \\ 0 & -1 & -1 \end{bmatrix}.$$

Compute the change-of-coordinates matrix from ${\mathcal B}$ to ${\mathcal C}.$ Sol:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ -3 & -4 & -3 & -2 & -3 & -4 \\ 0 & -1 & -1 & -5 & -3 & -2 \end{bmatrix} \sim_{\text{pivot at (1,1)}}^{r_2 \to r_2 + 3 r_1} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 0 & 1 & 0 & -1 \\ 0 & -1 & -1 & -5 & -3 & -2 \end{bmatrix} \\ \sim_{\text{pivot at (2,2)}}^{r_3 \to r_3 - r_2} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 0 & 1 & 0 & -1 \\ 0 & 0 & -1 & -6 & -3 & -1 \end{bmatrix} \\ \sim_{\text{pivot at (2,2)}}^{r_3 \to -r_3} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 6 & 3 & 1 \end{bmatrix} \\ \sim_{\text{pivot at (3,3)}}^{r_1 \to r_1 - r_3} \begin{bmatrix} 1 & 1 & 0 & -5 & -2 & 0 \\ 0 & -1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 6 & 3 & 1 \end{bmatrix} \\ \sim_{r_2 \to -r_2}^{r_2 \to -r_2} \begin{bmatrix} 1 & 1 & 0 & -5 & -2 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 6 & 3 & 1 \end{bmatrix} \\ \sim_{\text{pivot at (2,2)}}^{r_1 \to r_1 - r_2} \begin{bmatrix} 1 & 0 & 0 & -4 & -2 & -1 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 6 & 3 & 1 \end{bmatrix}$$

The desired matrix is
$$\begin{bmatrix} -4 & -2 & -1 \\ -1 & 0 & 1 \\ 6 & 3 & 1 \end{bmatrix}$$
.

ver. A (page 5 of 9)

Name: ____

(6 points) 6. Diagonalize $A = \begin{bmatrix} 0 & -1 & -1 \\ 1 & -2 & -1 \\ -1 & 1 & 0 \end{bmatrix}$ if possible.

Sol: Step1: Compute the eigenvalues.

The characteristic polynomial is $\det(A - \lambda I) = \det \begin{bmatrix} -\lambda & -1 & -1 \\ 1 & -2 - \lambda & -1 \\ -1 & 1 & -\lambda \end{bmatrix} = -\lambda (\lambda + 1)^2.$

Thus the eigenvalues are -1, 0, with multiplicity 2, 1, respectively.

Step 2: Compute the eigenvectors.

For $\lambda_1 = -1$, we have

$$\begin{bmatrix} 1 & -1 & -1 \\ 1 & -1 & -1 \\ -1 & 1 & 1 \end{bmatrix} \xrightarrow{r_2 \to r_2 - r_1}_{pivot at (1,1)} \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The corresponding eigenvectors are $v_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$

For $\lambda_2 = 0$, we have

$$\begin{bmatrix} 0 & -1 & -1 \\ 1 & -2 & -1 \\ -1 & 1 & 0 \end{bmatrix} \sim^{r_1 \leftrightarrow r_2} \begin{bmatrix} 1 & -2 & -1 \\ 0 & -1 & -1 \\ -1 & 1 & 0 \end{bmatrix}$$
$$\sim^{r_3 \rightarrow r_3 + r_1} \begin{bmatrix} 1 & -2 & -1 \\ 0 & -1 & -1 \\ 0 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix}$$
$$\sim^{r_3 \rightarrow r_3 - r_2} \begin{bmatrix} 1 & -2 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\sim^{r_2 \rightarrow -r_2} \begin{bmatrix} 1 & -2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\sim^{r_1 \rightarrow r_1 + 2r_2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

The corresponding eigenvectors are $v_3 = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$.

Name: _____

Step 3: construct *P*. Set $P = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$. Step 4: construct *D*. Set $D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

Thus A is diagonalizable and we have $A = PDP^{-1}$.

```
Name: _
```

7. Suppose that A is an $n \times n$ matrix. If $p(t) = a_0 + a_1t + a_2t^2 + a_3t^3$ is a polynomial, then define $p(A) = a_0I + a_1A + a_2A^2 + a_3A^3$. For instance if $p(t) = 1 - t^3$ then $p(A) = I - A^3$. Assume p(A) = O (the zero matrix) for $p(t) = (t^2 - 2)(t + 1)$.

(3 points) (a) Find all possible eigenvalues of A.

(3 points) (b) Show that A is invertible and represent A^{-1} in terms of q(A) for a polynomial q(t).

Sol: (a)
$$\sqrt{2}, -\sqrt{2}, -1$$

(b) $p(A) = (A^2 - 2I)(A + I) = A^3 + A^2 - 2A - 2I = O$
Thus $I = \frac{A^3 + A^2 - 2A}{2} = A \cdot \frac{A^2 + A - 2I}{2}$, and so $A^{-1} = \frac{A^2 + A - 2I}{2}$, i.e., $q(A) = \frac{A^2 + A - 2I}{2}$

ver. A (page 8 of 9)

Name: _____

(6 points) 8. The columns of $A = \begin{bmatrix} 1 & 0 & 1 \\ 3 & -4 & 0 \\ 2 & -1 & -4 \\ 0 & 3 & -3 \end{bmatrix}$ are linearly independent. Find an orthonormal basis for ColA, the column space of A. Sol: Step 1: Set $\mathbf{v}_1 = \mathbf{x}_1$ and $W_1 = \operatorname{span}\{\mathbf{v}_1\}$.

Step 2:
$$\operatorname{proj}_{W_1} \mathbf{x}_2 = \begin{bmatrix} -1 \\ -3 \\ -2 \\ 0 \end{bmatrix}$$
,
Set $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 3 \end{bmatrix}$,
Step 3: $\operatorname{proj}_{W_2} \mathbf{x}_3 = \begin{bmatrix} -3/2 \\ -1/2 \\ -2 \\ -3 \end{bmatrix}$,
Set $\mathbf{v}_3 = \begin{bmatrix} 5/2 \\ 1/2 \\ -2 \\ 0 \end{bmatrix}$,

Therefore, the desired orthogonal basis is $\begin{cases} \begin{bmatrix} 1\\3\\2\\0 \end{bmatrix} \begin{bmatrix} 1\\-1\\1\\3 \end{bmatrix} \begin{bmatrix} 5/2\\1/2\\-2\\0 \end{bmatrix} \\ .$ The desired orthonormal basis is $\begin{cases} \begin{bmatrix} 1/14\sqrt{14}\\3/14\sqrt{14}\\1/7\sqrt{14}\\0 \end{bmatrix} \begin{bmatrix} 1/6\sqrt{3}\\-1/6\sqrt{3}\\1/6\sqrt{3}\\1/2\sqrt{3} \end{bmatrix} \begin{bmatrix} \frac{5}{42}\sqrt{42}\\1/42\sqrt{42}\\-2/21\sqrt{42}\\0 \end{bmatrix} \\ .$

```
9. Let P be an n \times n matrix satisfying ||P\mathbf{x}|| = ||\mathbf{x}|| for all \mathbf{x} in \mathbb{R}^n.
```

- (a) Show that $P\mathbf{x} \cdot P\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ holds for all \mathbf{x}, \mathbf{y} in \mathbb{R}^n . (3 points)
- (3 points)(b) Show that P is an orthogonal matrix.

Sol: (a) Consider for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$||P(\mathbf{x} + \mathbf{y})||^{2} = ||P\mathbf{x} + P\mathbf{y}||^{2} = (P\mathbf{x} + P\mathbf{y}) \cdot (P\mathbf{x} + P\mathbf{y})$$

= $P\mathbf{x} \cdot P\mathbf{x} + P\mathbf{y} \cdot P\mathbf{y} + 2(P\mathbf{x} \cdot P\mathbf{y})$
= $||P\mathbf{x}||^{2} + ||P\mathbf{y}||^{2} + 2(P\mathbf{x} \cdot P\mathbf{y}) = ||\mathbf{x}||^{2} + ||\mathbf{y}||^{2} + 2(P\mathbf{x} \cdot P\mathbf{y})$ (1)

Meanwhile, according to the condition,

$$||P(\mathbf{x}+\mathbf{y})||^{2} = ||\mathbf{x}+\mathbf{y}||^{2} = (\mathbf{x}+\mathbf{y})\cdot(\mathbf{x}+\mathbf{y}) = \mathbf{x}\cdot\mathbf{x}+\mathbf{y}\cdot\mathbf{y}+2(\mathbf{x}\cdot\mathbf{y}) = ||x^{2}||+||y||^{2}+2(\mathbf{x}\cdot\mathbf{y})$$
(2)

Thus combining (1) and (2) we get $P\mathbf{x} \cdot P\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$. (b) Let $\{\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n\}$ be the set of canonical bases of \mathbb{R}^n such that $I_n = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_n \end{bmatrix}$. Also write $P = \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix}$, where \mathbf{p}_i denotes the i-th column of P. Then for each $0 \leq i, j \leq n$, $\mathbf{p}_i = P \cdot \mathbf{e}_i$ and $\mathbf{p}_j = P \cdot \mathbf{e}_j$. So by (a) we know

$$\mathbf{p}_i \cdot \mathbf{p}_j = (P \cdot \mathbf{e}_i) \cdot (P \cdot \mathbf{e}_j) = \mathbf{e}_i \cdot \mathbf{e}_j = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Thus $P^T P = I_n$, which implies that P is an orthonormal matrix. In particular, P is an orthogonal matrix.

Name: _____

Name: ______ PID: _____

Instructions

- 1. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
- 2. You may use one handwritten page of notes, but no books or other assistance during this exam.
- 3. Read each question carefully and answer each question completely.
- 4. Show all of your work. No credit will be given for unsupported answers, even if correct.
- 5. Write your Name at the top of each page.
- (1 point) 1. Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
- (6 points) 2. Determine if the following system of linear equations is consistent or not. If the system is consistent, describe the solution set by using parametric form.

$$\begin{cases} -x_2 -4x_3 +x_4 -2x_5 = -6\\ x_1 +x_3 -2x_4 +7x_5 = 1\\ -x_1 -2x_2 -9x_3 +5x_4 -13x_5 = -16 \end{cases}$$

Sol:

$$\begin{bmatrix} 0 & -1 & -4 & 1 & -2 & -6 \\ 1 & 0 & 1 & -2 & 7 & 1 \\ -1 & -2 & -9 & 5 & -13 & -16 \end{bmatrix} \sim^{r_1 \leftrightarrow r_2} \begin{bmatrix} 1 & 0 & 1 & -2 & 7 & 1 \\ 0 & -1 & -4 & 1 & -2 & -6 \\ -1 & -2 & -9 & 5 & -13 & -16 \end{bmatrix}$$
$$\sim^{r_3 \to r_3 + r_1}_{\text{pivot at (1,1)}} \begin{bmatrix} 1 & 0 & 1 & -2 & 7 & 1 \\ 0 & -1 & -4 & 1 & -2 & -6 \\ 0 & -2 & -8 & 3 & -6 & -15 \end{bmatrix}$$
$$\sim^{r_3 \to r_3 - 2r_2}_{\text{pivot at (2,2)}} \begin{bmatrix} 1 & 0 & 1 & -2 & 7 & 1 \\ 0 & -1 & -4 & 1 & -2 & -6 \\ 0 & 0 & 0 & 1 & -2 & -3 \end{bmatrix}$$
$$\overset{r_1 \to r_1 + 2r_3}{\sim^{r_2 \to r_2 - r_3}}_{\text{pivot at (3,4)}} \begin{bmatrix} 1 & 0 & 1 & 0 & 3 & -5 \\ 0 & -1 & -4 & 0 & 0 & -3 \\ 0 & 0 & 0 & 1 & -2 & -3 \end{bmatrix}$$
$$\sim^{r_2 \to -r_2} \begin{bmatrix} 1 & 0 & 1 & 0 & 3 & -5 \\ 0 & 1 & 4 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & -2 & -3 \end{bmatrix}$$

The general solution of the linear system is:

$$\begin{bmatrix} -5\\ 3\\ 0\\ -3\\ 0 \end{bmatrix} \begin{bmatrix} -6\\ -1\\ 1\\ -3\\ 0 \end{bmatrix} \begin{bmatrix} -8\\ 3\\ 0\\ -1\\ 1 \end{bmatrix}.$$

The first vector is a special solution. See version A for the format.

ver. B (page 2 of 9)

Name: _____

3. Given that
$$A = [\mathbf{a}_1 \ \mathbf{a}_2 \cdots \mathbf{a}_6] = \begin{bmatrix} 1 & 1 & 0 & -3 & 0 & -2 \\ 5 & 4 & 0 & -15 & -1 & -12 \\ 1 & -2 & 1 & -8 & -3 & -11 \\ 1 & 2 & 2 & -13 & 2 & -1 \end{bmatrix}$$
 is row equivalent to $B = \begin{bmatrix} 1 & 0 & 0 & -3 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & -3 \\ 0 & 0 & 1 & -5 & 0 & -3 \\ 0 & 0 & 0 & 0 & 1 & 5 \end{bmatrix}$. Let H be the subspace of \mathbb{R}^4 spanned by $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$

and K be the subspace of \mathbb{R}^4 spanned by $\{\mathbf{a}_4, \mathbf{a}_5, \mathbf{a}_6\}$. Find a basis for each of the following subspaces.

- (3 points) (a) $\operatorname{Row}(A)^{\perp}$, the orthogonal complement of the row space of A.
- (2 points) (b) H + K, the sum of the two subspaces H and K.
- (2 points) (c) $H \cap K$, the intersection of the two subspaces H and K.

Sol: (a) The basis of
$$\operatorname{Row}(A)^{\perp}$$
 is $\left\{ \begin{bmatrix} -1\\3\\3\\0\\-5 \end{bmatrix} \begin{bmatrix} 3\\0\\5\\1\\0 \end{bmatrix} \right\}$

$$\begin{bmatrix} & \mathbf{0} \\ & 1 \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ & 0 \end{bmatrix}$$
(b) The basis of $H + K$ is $\left\{ \begin{bmatrix} 1 \\ 5 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ -2 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ -3 \\ 2 \end{bmatrix} \right\}$
(c) The basis of $H \cap K$ is $\{\mathbf{a}_4, \mathbf{a}_6 - 5\mathbf{a}_5\}$, or $\left\{ \begin{bmatrix} -3 \\ -15 \\ -8 \\ -13 \end{bmatrix} \begin{bmatrix} -2 \\ -7 \\ 4 \\ -11 \end{bmatrix} \right\}$

- 4. Let T be the linear transformation from \mathbb{R}^2 to \mathbb{R}^2 defined by $T(a_0, a_1) = (5 a_0 2 a_1, 5 a_0 + a_1)$. Let S be the parallelogram with vertices (1, -2), (3, 1), (5, 5), (7, 8).
- (2 points) (a) Find the standard matrix of T.
- (2 points) (b) Compute the area of S.
- (2 points) (c) Compute the area of T(S).

Sol: (a)
$$T = \begin{bmatrix} 5 & -2 \\ 5 & 1 \end{bmatrix}$$

(b) $Area = \begin{vmatrix} 2 & 4 \\ 3 & 7 \end{vmatrix} = 2$
(c) $Area = \begin{vmatrix} 5 & -2 \\ 5 & 1 \end{vmatrix} \cdot \begin{vmatrix} 2 & 4 \\ 3 & 7 \end{vmatrix} = 15 \cdot 2 = 30$

ver. B (page 4 of 9)

```
Name: _____
```

(6 points) 5. Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3\}$ be two bases of \mathbb{R}^3 , where

$$\begin{bmatrix} \mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 2 & 5 \\ 2 & 5 & 8 \end{bmatrix}, \quad \begin{bmatrix} \mathbf{c}_1 \ \mathbf{c}_2 \ \mathbf{c}_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 5 & 1 & 3 \\ 1 & -2 & 6 \end{bmatrix}.$$

Compute the change-of-coordinates matrix from ${\mathcal B}$ to ${\mathcal C}.$ Sol:

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 2 \\ 5 & 1 & 3 & 3 & 2 & 5 \\ 1 & -2 & 6 & 2 & 5 & 8 \end{bmatrix} \xrightarrow{r_2 \to r_2 - 5 r_1}_{\text{pivot at (1,1)}} \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 2 \\ 0 & 1 & -2 & -2 & -3 & -5 \\ 0 & -2 & 5 & 1 & 4 & 6 \end{bmatrix}$$
$$\xrightarrow{r_3 \to r_3 + 2 r_2}_{\text{pivot at (2,2)}} \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 2 \\ 0 & 1 & -2 & -2 & -3 & -5 \\ 0 & 0 & 1 & -3 & -2 & -4 \end{bmatrix}$$
$$\xrightarrow{r_1 \to r_1 - r_3}_{\text{pivot at (3,3)}} \begin{bmatrix} 1 & 0 & 0 & 4 & 3 & 6 \\ 0 & 1 & 0 & -8 & -7 & -13 \\ 0 & 0 & 1 & -3 & -2 & -4 \end{bmatrix}$$

The desired matrix is
$$\begin{bmatrix} 4 & 3 & 6 \\ -8 & -7 & -13 \\ -3 & -2 & -4 \end{bmatrix}$$
.

ver. B (page 5 of 9)

Name:	

(6 points) 6. Diagonalize $A = \begin{bmatrix} 3 & -2 & -1 \\ 2 & -1 & -1 \\ 2 & -2 & 0 \end{bmatrix}$ if possible.

Sol: Step1: Compute the eigenvalues.

The characteristic polynomial is $\det(A - \lambda I) = \det \begin{bmatrix} 3 - \lambda & -2 & -1 \\ 2 & -1 - \lambda & -1 \\ 2 & -2 & -\lambda \end{bmatrix} = -\lambda (\lambda - 1)^2.$

Thus the eigenvalues are 0, 1, with multiplicity 1, 2, respectively.

Step 2: Compute the eigenvectors.

For $\lambda_1 = 0$, we have

$$\begin{bmatrix} 3 & -2 & -1 \\ 2 & -1 & -1 \\ 2 & -2 & 0 \end{bmatrix} \xrightarrow{r_2 \to r_2 - 2/3 r_1}_{\text{pivot at (1,1)}} \begin{bmatrix} 3 & -2 & -1 \\ 0 & 1/3 & -1/3 \\ 0 & -2/3 & 2/3 \end{bmatrix}$$
$$\xrightarrow{r_3 \to r_3 + 2 r_2}_{\text{pivot at (2,2)}} \begin{bmatrix} 3 & -2 & -1 \\ 0 & 1/3 & -1/3 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\xrightarrow{r_2 \to 3 r_2} \begin{bmatrix} 3 & -2 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\xrightarrow{r_1 \to r_1 + 2 r_2}_{\text{pivot at (2,2)}} \begin{bmatrix} 3 & 0 & -3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\xrightarrow{r_1 \to r_1 + 2 r_2}_{\text{pivot at (2,2)}} \begin{bmatrix} 3 & 0 & -3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

The corresponding eigenvectors are $v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

For $\lambda_2 = 1$, we have

$$\begin{bmatrix} 2 & -2 & -1 \\ 2 & -2 & -1 \\ 2 & -2 & -1 \\ 2 & -2 & -1 \end{bmatrix} \xrightarrow[\text{pivot at } (1,1)]{r_3 \to r_3 - r_1} \begin{bmatrix} 2 & -2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\sim^{r_1 \to 1/2 r_1} \begin{bmatrix} 1 & -1 & -1/2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The corresponding eigenvectors are $v_2 = \begin{bmatrix} 1/2 \\ 0 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$ Step 3: construct P. Set $P = \begin{bmatrix} 1 & 1/2 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$ Step 4: construct D. Set $D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$

Thus A is diagonalizable and we have $A = PDP^{-1}$.

```
Name: _
```

7. Suppose that A is an $n \times n$ matrix. If $p(t) = a_0 + a_1t + a_2t^2 + a_3t^3$ is a polynomial, then define $p(A) = a_0I + a_1A + a_2A^2 + a_3A^3$. For instance if $p(t) = 1 - t^3$ then $p(A) = I - A^3$. Assume p(A) = O (the zero matrix) for $p(t) = (t^2 - 2)(t + 3)$.

(3 points) (a) Find all possible eigenvalues of A.

(3 points) (b) Show that A is invertible and represent A^{-1} in terms of q(A) for a polynomial q(t).

(a)
$$\sqrt{2}, -\sqrt{2}, -3$$

(b) $p(A) = (A^2 - 2I)(A + 3I) = A^3 + 3A^2 - 2A - 6I = O$
Thus $I = \frac{A^3 + 3A^2 - 2A}{6} = A \cdot \frac{A^2 + 3A - 2I}{6}$, and so $A^{-1} = \frac{A^2 + 3A - 2I}{6}$, i.e., $q(A) = \frac{A^2 + 3A - 2I}{6}$

ver. B (page 8 of 9)

8. The columns of $A = \begin{vmatrix} 2 & -3 & 2 \\ -1 & 3 & -1 \\ -1 & 3 & 0 \\ 0 & 0 & 4 \end{vmatrix}$ are linearly independent. Find an orthonormal basis for (6 points)ColA, the column space of A Sol: Step 1: Set $\mathbf{v}_1 = \mathbf{x}_1$ and $W_1 = \operatorname{span}\{\mathbf{v}_1\}$. Step 2: $\operatorname{proj}_{W_1} \mathbf{x}_2 = \begin{vmatrix} -4 \\ 2 \\ 2 \\ -2 \end{vmatrix}$, Set $\mathbf{v}_2 = \begin{bmatrix} 1\\1\\1\\c \end{bmatrix}$, Step 3: $\operatorname{proj}_{W_2} \mathbf{x}_3 = \begin{vmatrix} 2 \\ -1/2 \\ -1/2 \\ -1/2 \end{vmatrix}$, Set $\mathbf{v}_3 = \begin{bmatrix} 0 \\ -1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$, Therefore, the desired orthogonal basis is $\left\{ \begin{bmatrix} 2\\-1\\-1\\0 \end{bmatrix} \begin{bmatrix} 1\\1\\-1/2\\0 \end{bmatrix} \begin{vmatrix} 0\\-1/2\\1\\0 \end{vmatrix} \right\}.$

The desired orthonormal basis is $\left\{ \begin{bmatrix} 1/3\sqrt{6} \\ -1/6\sqrt{6} \\ -1/6\sqrt{6} \\ 0 \end{bmatrix} \begin{bmatrix} 1/3\sqrt{3} \\ 1/3\sqrt{3} \\ 1/3\sqrt{3} \\ 1/3\sqrt{3} \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ -\frac{1}{66}\sqrt{66} \\ \frac{1}{66}\sqrt{66} \\ \frac{4}{4}\sqrt{66} \end{bmatrix} \right\}.$

```
Name: _____
```

9. Let Q be an $n \times n$ matrix satisfying $||Q\mathbf{x}|| = ||\mathbf{x}||$ for all \mathbf{x} in \mathbb{R}^n .

- (3 points) (a) Show that $Q\mathbf{x} \cdot Q\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ holds for all \mathbf{x}, \mathbf{y} in \mathbb{R}^n .
- (3 points) (b) S

(b) Show that Q is an orthogonal matrix. Sol: (a) Consider for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$\begin{aligned} \|Q(\mathbf{x} + \mathbf{y})\|^2 &= \|Q\mathbf{x} + Q\mathbf{y}\|^2 = (Q\mathbf{x} + P\mathbf{y}) \cdot (Q\mathbf{x} + Q\mathbf{y}) \\ &= Q\mathbf{x} \cdot Q\mathbf{x} + Q\mathbf{y} \cdot Q\mathbf{y} + 2(Q\mathbf{x} \cdot Q\mathbf{y}) \\ &= \|Q\mathbf{x}\|^2 + \|Q\mathbf{y}\|^2 + 2(Q\mathbf{x} \cdot Q\mathbf{y}) = \|x\|^2 + \|y\|^2 + 2(Q\mathbf{x} \cdot Q\mathbf{y}) \quad (1) \end{aligned}$$

Meanwhile, according to the condition,

$$\|Q(\mathbf{x}+\mathbf{y})\|^{2} = \|\mathbf{x}+\mathbf{y}\|^{2} = (\mathbf{x}+\mathbf{y})\cdot(\mathbf{x}+\mathbf{y}) = \mathbf{x}\cdot\mathbf{x}+\mathbf{y}\cdot\mathbf{y}+2(\mathbf{x}\cdot\mathbf{y}) = \|x^{2}\|+\|y\|^{2}+2(\mathbf{x}\cdot\mathbf{y})$$
(2)

Thus combining (1) and (2) we get $Q\mathbf{x} \cdot Q\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$. (b) Let $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ be the set of canonical bases of \mathbb{R}^n such that $I_n = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_n \end{bmatrix}$. Also write $Q = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \end{bmatrix}$, where \mathbf{q}_i denotes the i-th column of Q. Then for each $0 \leq i, j \leq n, \mathbf{q}_i = Q \cdot \mathbf{e}_i$ and $\mathbf{q}_j = Q \cdot \mathbf{e}_j$. So by (a) we know

$$\mathbf{q}_i \cdot \mathbf{q}_j = (Q \cdot \mathbf{e}_i) \cdot (Q \cdot \mathbf{e}_j) = \mathbf{e}_i \cdot \mathbf{e}_j = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Thus $Q^T Q = I_n$, which implies that Q is an orthonormal matrix. In particular, Q is an orthogonal matrix.

Instructions

- 1. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
- 2. You may use one handwritten page of notes, but no books or other assistance during this exam.
- 3. Read each question carefully and answer each question completely.
- 4. Show all of your work. No credit will be given for unsupported answers, even if correct.
- 5. Write your Name at the top of each page.
- (1 point) 1. Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
- (6 points) 2. Determine if the following system of linear equations is consistent or not. If the system is consistent, describe the solution set by using parametric form.

$$\begin{cases} x_1 & -2x_3 & +2x_4 & = 5\\ x_1 & +x_2 & +2x_3 & +x_4 & -2x_5 & = -3\\ x_1 & +x_2 & +2x_3 & +2x_4 & -3x_5 & = 0 \end{cases}$$

Sol:

$$\begin{bmatrix} 1 & 0 & -2 & 2 & 0 & 5 \\ 1 & 1 & 2 & 1 & -2 & -3 \\ 1 & 1 & 2 & 2 & -3 & 0 \end{bmatrix} \xrightarrow{r_2 \to r_2 - r_1}_{\text{pivot at (1,1)}} \begin{bmatrix} 1 & 0 & -2 & 2 & 0 & 5 \\ 0 & 1 & 4 & -1 & -2 & -8 \\ 0 & 1 & 4 & 0 & -3 & -5 \end{bmatrix}$$
$$\xrightarrow{r_3 \to r_3 - r_2}_{\text{pivot at (2,2)}} \begin{bmatrix} 1 & 0 & -2 & 2 & 0 & 5 \\ 0 & 1 & 4 & 0 & -3 & -5 \end{bmatrix}$$
$$\frac{r_1 \to r_1 - 2r_3}{r_2 \to r_2 + r_3}$$
$$\xrightarrow{r_1 \to r_1 - 2r_3}_{\text{pivot at (3,4)}} \begin{bmatrix} 1 & 0 & -2 & 0 & 2 & -1 \\ 0 & 1 & 4 & 0 & -3 & -5 \\ 0 & 1 & 4 & 0 & -3 & -5 \\ 0 & 0 & 0 & 1 & -1 & 3 \end{bmatrix}$$

The general solution of the linear system is:

[−1]	[1]	[−3]	
-5	-9	-2	
0		0.	
		4	

The first vector is a special solution. See version A for the format.

ver. C (page 2 of 9)

Name: _____

3. Given that
$$A = [\mathbf{a}_1 \ \mathbf{a}_2 \cdots \mathbf{a}_6] = \begin{bmatrix} 1 & 1 & -2 & 0 & 2 & 0 \\ -2 & -3 & 3 & -2 & -5 & -2 \\ -1 & -3 & -1 & -4 & -3 & -5 \\ -3 & 0 & 11 & 6 & -6 & 7 \end{bmatrix}$$
 is row equivalent to $B = \begin{bmatrix} 1 & 0 & 0 & -2 & 0 & 3 \\ 0 & 1 & 0 & 2 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$. Let H be the subspace of \mathbb{R}^4 spanned by $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$

and K be the subspace of \mathbb{R}^4 spanned by $\{\mathbf{a}_4, \mathbf{a}_5, \mathbf{a}_6\}$. Find a basis for each of the following subspaces.

- (a) $\operatorname{Row}(A)^{\perp}$, the orthogonal complement of the row space of A. (3 points)
- (b) H + K, the sum of the two subspaces H and K. (2 points)
- (c) $H \cap K$, the intersection of the two subspaces H and K. (2 points)

Sol: (a) The basis of Row
$$(A)^{\perp}$$
 is $\left\{ \begin{bmatrix} -3\\1\\-2\\0\\-1\\1\\1 \end{bmatrix} \begin{bmatrix} 2\\-2\\0\\1\\0\\0 \end{bmatrix} \right\}$
(b) The basis of $H + K$ is $\left\{ \begin{bmatrix} 1\\-2\\-1\\-3\\-3\\0 \end{bmatrix} \begin{bmatrix} 1\\-3\\-3\\0\\0 \end{bmatrix} \begin{bmatrix} -2\\3\\-1\\11\\11 \end{bmatrix} \begin{bmatrix} 2\\-5\\-3\\6\\-3\\6 \end{bmatrix} \right\}$
(c) The basis of $H \cap K$ is $\{\mathbf{a}_4, \mathbf{a}_6 - \mathbf{a}_5\}$, or $\left\{ \begin{bmatrix} 0\\-2\\-4\\6 \end{bmatrix} \begin{bmatrix} -2\\3\\-2\\13\\1 \end{bmatrix} \right\}$

- 4. Let T be the linear transformation from \mathbb{R}^2 to \mathbb{R}^2 defined by $T(a_0, a_1) = (a_0 9a_1, a_0 + 3a_1)$. Let S be the parallelogram with vertices (1, -3), (5, 0), (6, 4), (10, 7).
- (2 points) (a) Find the standard matrix of T.
- (2 points) (b) Compute the area of S.
- (2 points) (c) Compute the area of T(S).

Sol: (a)
$$T = \begin{bmatrix} 1 & -9 \\ 1 & 3 \end{bmatrix}$$

(b) $Area = \begin{vmatrix} 4 & 5 \\ 3 & 7 \end{vmatrix} = 13$
(c) $Area = \begin{vmatrix} 1 & -9 \\ 1 & 3 \end{vmatrix} \cdot \begin{vmatrix} 4 & 5 \\ 3 & 7 \end{vmatrix} = 12 \cdot 13 = 156$

ver. C (page 4 of 9)

```
Name: _____
```

(6 points) 5. Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3\}$ be two bases of \mathbb{R}^3 , where

$$[\mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3] = \begin{bmatrix} 1 & -1 & 2 \\ -4 & 3 & -6 \\ 0 & -1 & 3 \end{bmatrix}, \quad [\mathbf{c}_1 \ \mathbf{c}_2 \ \mathbf{c}_3] = \begin{bmatrix} 1 & 1 & 1 \\ -3 & -3 & -4 \\ 5 & 6 & 7 \end{bmatrix}.$$

Compute the change-of-coordinates matrix from ${\mathcal B}$ to ${\mathcal C}.$ Sol:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & -1 & 2 \\ -3 & -3 & -4 & -4 & 3 & -6 \\ 5 & 6 & 7 & 0 & -1 & 3 \end{bmatrix} \xrightarrow{r_2 \to r_2 + 3r_1} \begin{bmatrix} 1 & 1 & 1 & 1 & -1 & 2 \\ 0 & 0 & -1 & -1 & 0 & 0 \\ 0 & 1 & 2 & -5 & 4 & -7 \end{bmatrix} \\ \sim^{r_2 \leftrightarrow r_3} \begin{bmatrix} 1 & 1 & 1 & 1 & -1 & 2 \\ 0 & 1 & 2 & -5 & 4 & -7 \\ 0 & 1 & 2 & -5 & 4 & -7 \\ 0 & 0 & -1 & -1 & 0 & 0 \end{bmatrix}$$

$$\sim^{r_3 \to -r_3} \begin{bmatrix} 1 & 1 & 1 & 1 & -1 & 2 \\ 0 & 1 & 2 & -5 & 4 & -7 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

$$r_1 \to r_1 - r_3$$

$$r_2 \to r_2 - 2r_3$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 & -1 & 2 \\ 0 & 1 & 0 & -7 & 4 & -7 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

$$\sim^{r_1} \to r_1 - r_2$$

$$\begin{bmatrix} 1 & 0 & 0 & 7 & -5 & 9 \\ 0 & 1 & 0 & -7 & 4 & -7 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

$$\sim^{r_1} \to r_1 - r_2$$

$$\begin{bmatrix} 1 & 0 & 0 & 7 & -5 & 9 \\ 0 & 1 & 0 & -7 & 4 & -7 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

The desired matrix is $\begin{bmatrix} 7 & -5 & 9 \\ -7 & 4 & -7 \\ 1 & 0 & 0 \end{bmatrix}$.

ver. C (page 5 of 9)

Name:	

(6 points) 6. Diagonalize $A = \begin{bmatrix} 0 & -2 & -2 \\ 1 & 3 & 2 \\ -1 & -2 & -1 \end{bmatrix}$ if possible.

Sol: Step1: Compute the eigenvalues.

The characteristic polynomial is $\det(A - \lambda I) = \det \begin{bmatrix} -\lambda & -2 & -2 \\ 1 & 3 - \lambda & 2 \\ -1 & -2 & -1 - \lambda \end{bmatrix} = -\lambda (\lambda - 1)^2.$

Thus the eigenvalues are 0, 1, with multiplicity 1, 2, respectively.

Step 2: Compute the eigenvectors.

For $\lambda_1 = 0$, we have

$$\begin{bmatrix} 0 & -2 & -2 \\ 1 & 3 & 2 \\ -1 & -2 & -1 \end{bmatrix} \sim^{r_1 \leftrightarrow r_2} \begin{bmatrix} 1 & 3 & 2 \\ 0 & -2 & -2 \\ -1 & -2 & -1 \end{bmatrix}$$
$$\sim^{r_3 \rightarrow r_3 + r_1}_{\text{pivot at (1,1)}} \begin{bmatrix} 1 & 3 & 2 \\ 0 & -2 & -2 \\ 0 & 1 & 1 \end{bmatrix}$$
$$\sim^{r_3 \rightarrow r_3 + 1/2 r_2}_{\text{pivot at (2,2)}} \begin{bmatrix} 1 & 3 & 2 \\ 0 & -2 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\sim^{r_2 \rightarrow -1/2 r_2} \begin{bmatrix} 1 & 3 & 2 \\ 0 & -2 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\sim^{r_1 \rightarrow r_1 - 3 r_2}_{\text{pivot at (2,2)}} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

The corresponding eigenvectors are $v_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$.

For $\lambda_2 = 1$, we have

$$\begin{bmatrix} -1 & -2 & -2\\ 1 & 2 & 2\\ -1 & -2 & -2 \end{bmatrix} \xrightarrow[\text{pivot at } (1,1)]{r_3 \to r_3 - r_1} \begin{bmatrix} -1 & -2 & -2\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$$
$$\sim^{r_1 \to -r_1} \begin{bmatrix} 1 & 2 & 2\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$$

The corresponding eigenvectors are
$$v_2 = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$
, $v_3 = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$.
Step 3: construct P . Set $P = \begin{bmatrix} 1 & -2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.
Step 4: construct D . Set $D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Thus A is diagonalizable and we have $A = PDP^{-1}$.

```
Name: _
```

7. Suppose that A is an $n \times n$ matrix. If $p(t) = a_0 + a_1t + a_2t^2 + a_3t^3$ is a polynomial, then define $p(A) = a_0I + a_1A + a_2A^2 + a_3A^3$. For instance if $p(t) = 1 - t^3$ then $p(A) = I - A^3$. Assume p(A) = O (the zero matrix) for $p(t) = (t^2 - 3)(t + 1)$.

(3 points) (a) Find all possible eigenvalues of A.

(3 points) (b) Show that A is invertible and represent A^{-1} in terms of q(A) for a polynomial q(t).

(a)
$$\sqrt{3}, -\sqrt{3}, -1$$

(b) $p(A) = (A^2 - 3I)(A + I) = A^3 + A^2 - 3A - 3I = O$
Thus $I = \frac{A^3 + A^2 - 3A}{3} = A \cdot \frac{A^2 + A - 3I}{3}$, and so $A^{-1} = \frac{A^2 + A - 3I}{3}$, i.e., $q(A) = \frac{A^2 + A - 3I}{3}$.

ver. C (page 8 of 9)

(6 points) 8. The columns of $A = \begin{bmatrix} 1 & -6 & 4 \\ -2 & 9 & -3 \\ 0 & -3 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ are linearly independent. Find an orthonormal basis for ColA, the column space of A. Sol: Step 1: Set $\mathbf{v}_1 = \mathbf{x}_1$ and $W_1 = \operatorname{span}\{\mathbf{v}_1\}$. Step 2: $\operatorname{proj}_{W_1}\mathbf{x}_2 = \begin{bmatrix} -4 \\ 8 \\ 0 \\ -4 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$

Set
$$\mathbf{v}_2 = \begin{bmatrix} 1\\ -3\\ 4 \end{bmatrix}$$
,
Step 3: $\operatorname{proj}_{W_2} \mathbf{x}_3 = \begin{bmatrix} \frac{13}{5}\\ -\frac{19}{5}\\ 7/5\\ -1/5 \end{bmatrix}$,
Set $\mathbf{v}_3 = \begin{bmatrix} 7/5\\ 4/5\\ -2/5\\ 1/5 \end{bmatrix}$,

Therefore, the desired orthogonal basis is	$ \left\{ \begin{bmatrix} 1 \\ -2 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ -3 \\ 4 \end{bmatrix} \begin{bmatrix} 7/5 \\ 4/5 \\ -2/5 \\ 1/5 \end{bmatrix} \right\}. $
The desired orthonormal basis is $\begin{cases} 1 \\ -1 \\ 1 \\ 1 \end{cases}$	$ \begin{pmatrix} 6\sqrt{6} \\ /3\sqrt{6} \\ 0 \\ /6\sqrt{6} \end{bmatrix} \begin{bmatrix} -1/15\sqrt{30} \\ 1/30\sqrt{30} \\ -1/10\sqrt{30} \\ 2/15\sqrt{30} \end{bmatrix} \begin{bmatrix} 1/10\sqrt{70} \\ \frac{2}{35}\sqrt{70} \\ -1/35\sqrt{70} \\ \frac{1}{70}\sqrt{70} \end{bmatrix} \right\}. $

```
Name: _____
```

(1)

9. Let R be an $n \times n$ matrix satisfying $||R\mathbf{x}|| = ||\mathbf{x}||$ for all \mathbf{x} in \mathbb{R}^n .

(3 points) (a) Show that $R\mathbf{x} \cdot R\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ holds for all \mathbf{x}, \mathbf{y} in \mathbb{R}^n .

(3 points) (b)

(b) Show that R is an orthogonal matrix. Sol: (a) Consider for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$||R(\mathbf{x} + \mathbf{y})||^{2} = ||R\mathbf{x} + R\mathbf{y}||^{2} = (R\mathbf{x} + R\mathbf{y}) \cdot (R\mathbf{x} + R\mathbf{y})$$

= $R\mathbf{x} \cdot R\mathbf{x} + R\mathbf{y} \cdot R\mathbf{y} + 2(R\mathbf{x} \cdot R\mathbf{y})$
= $||R\mathbf{x}||^{2} + ||R\mathbf{y}||^{2} + 2(R\mathbf{x} \cdot R\mathbf{y}) = ||\mathbf{x}||^{2} + ||\mathbf{y}||^{2} + 2(R\mathbf{x} \cdot R\mathbf{y})$

Meanwhile, according to the condition,

$$||R(\mathbf{x}+\mathbf{y})||^{2} = ||\mathbf{x}+\mathbf{y}||^{2} = (\mathbf{x}+\mathbf{y})\cdot(\mathbf{x}+\mathbf{y}) = \mathbf{x}\cdot\mathbf{x}+\mathbf{y}\cdot\mathbf{y}+2(\mathbf{x}\cdot\mathbf{y}) = ||x^{2}||+||y||^{2}+2(\mathbf{x}\cdot\mathbf{y})$$
(2)

Thus combining (1) and (2) we get $R\mathbf{x} \cdot R\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$. (b) Let $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ be the set of canonical bases of \mathbb{R}^n such that $I_n = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_n \end{bmatrix}$. Also write $R = \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & \cdots & \mathbf{r}_n \end{bmatrix}$, where \mathbf{r}_i denotes the i-th column of R. Then for each $0 \leq i, j \leq n, \mathbf{r}_i = R \cdot \mathbf{e}_i$ and $\mathbf{r}_j = R \cdot \mathbf{e}_j$. So by (a) we know

$$\mathbf{r}_i \cdot \mathbf{r}_j = (R \cdot \mathbf{e}_i) \cdot (R \cdot \mathbf{e}_j) = \mathbf{e}_i \cdot \mathbf{e}_j = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Thus $R^T R = I_n$, which implies that R is an orthonormal matrix. In particular, R is an orthogonal matrix.

Instructions

- 1. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
- 2. You may use one handwritten page of notes, but no books or other assistance during this exam.
- 3. Read each question carefully and answer each question completely.
- 4. Show all of your work. No credit will be given for unsupported answers, even if correct.
- 5. Write your Name at the top of each page.
- (1 point) 1. Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
- (6 points) 2. Determine if the following system of linear equations is consistent or not. If the system is consistent, describe the solution set by using parametric form.

$$\begin{cases} x_1 + x_2 -5x_3 - x_4 &= -2\\ x_1 + 2x_2 -6x_3 - x_4 &= -7\\ x_1 + x_2 -5x_3 &- 3x_5 &= -1 \end{cases}$$

Sol:

$$\begin{bmatrix} 1 & 1 & -5 & -1 & 0 & -2 \\ 1 & 2 & -6 & -1 & 0 & -7 \\ 1 & 1 & -5 & 0 & -3 & -1 \end{bmatrix} \xrightarrow{r_2 \to r_2 - r_1}_{\text{pivot at (1,1)}} \begin{bmatrix} 1 & 1 & -5 & -1 & 0 & -2 \\ 0 & 1 & -1 & 0 & 0 & -5 \\ 0 & 0 & 0 & 1 & -3 & 1 \end{bmatrix}$$

$$\begin{array}{c} r_1 \rightarrow r_1 + r_3 \\ \sim_{\text{pivot at (3,4)}} & \left[\begin{array}{cccccc} 1 & 1 & -5 & 0 & -3 & -1 \\ 0 & 1 & -1 & 0 & 0 & -5 \\ 0 & 0 & 0 & 1 & -3 & 1 \end{array} \right] \\ \\ r_1 \rightarrow r_1 - r_2 \\ \sim_{\text{pivot at (2,2)}} & \left[\begin{array}{ccccccccc} 1 & 0 & -4 & 0 & -3 & 4 \\ 0 & 1 & -1 & 0 & 0 & -5 \\ 0 & 0 & 0 & 1 & -3 & 1 \end{array} \right] \end{array}$$

The general solution of the linear system is:

$$\begin{bmatrix} 4\\ -5\\ 0\\ 1\\ 0 \end{bmatrix} \begin{bmatrix} 8\\ -4\\ 1\\ 1\\ 0 \end{bmatrix} \begin{bmatrix} 7\\ -5\\ 0\\ 4\\ 1 \end{bmatrix}.$$

The first vector is a special solution. See version A for the format.

ver. D (page 2 of 9)

3. Given that
$$A = [\mathbf{a}_1 \ \mathbf{a}_2 \cdots \mathbf{a}_6] = \begin{bmatrix} 1 & 0 & -1 & -2 & 2 & 1 \\ -4 & 1 & 3 & 8 & -7 & -2 \\ -3 & -3 & 5 & 5 & -10 & -12 \\ -1 & -1 & 5 & 5 & 1 & 5 \end{bmatrix}$$
 is row equivalent to $B = \begin{bmatrix} 1 & 0 & 0 & -1 & 0 & 7 \\ 0 & 1 & 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & 1 & 0 & 4 \\ 0 & 0 & 0 & 0 & 1 & -1 \end{bmatrix}$. Let H be the subspace of \mathbb{R}^4 spanned by $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$

and K be the subspace of \mathbb{R}^4 spanned by $\{\mathbf{a}_4, \mathbf{a}_5, \mathbf{a}_6\}$. Find a basis for each of the following subspaces.

- (a) $\operatorname{Row}(A)^{\perp}$, the orthogonal complement of the row space of A. (3 points)
- (b) H + K, the sum of the two subspaces H and K. (2 points)
- (2 points)(c) $H \bigcap K$, the intersection of the two subspaces H and K.

Sol: (a) The basis of Row(A)^{$$\perp$$} is $\left\{ \begin{bmatrix} -7 \\ -7 \\ -4 \\ 0 \\ 1 \\ 1 \end{bmatrix} \right\}$
(b) The basis of $H + K$ is $\left\{ \begin{bmatrix} 1 \\ -4 \\ -3 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ -3 \\ -1 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \\ 5 \\ 5 \end{bmatrix} \begin{bmatrix} 2 \\ -7 \\ -10 \\ 1 \end{bmatrix} \right\}$
(c) The basis of $H \cap K$ is $\{\mathbf{a}_4, \mathbf{a}_5 + \mathbf{a}_6\}$, or $\left\{ \begin{bmatrix} -2 \\ 8 \\ 5 \\ 5 \end{bmatrix} \begin{bmatrix} 3 \\ -9 \\ -22 \\ 6 \end{bmatrix} \right\}$

```
Name: _
```

- 4. Let T be the linear transformation from \mathbb{R}^2 to \mathbb{R}^2 defined by $T(a_0, a_1) = (5a_0+6a_1, 5a_0-3a_1)$. Let S be the parallelogram with vertices (-2, -1), (-1, 2), (3, 6), (4, 9).
- (2 points) (a) Find the standard matrix of T.
- (2 points) (b) Compute the area of S.
- (2 points) (c) Compute the area of T(S).

Sol: (a) $T = \begin{bmatrix} 5 & 6 \\ 5 & -3 \end{bmatrix}$

(b) $\begin{vmatrix} 1 & 5 \\ 3 & 7 \end{vmatrix} = -8$

Thus Area = 8.

(c) $\begin{vmatrix} 5 & 6 \\ 5 & -3 \end{vmatrix}$ $\cdot \begin{vmatrix} 1 & 5 \\ 3 & 7 \end{vmatrix} = (-45) \cdot (-8) = 360$

Thus Area = 360.

ver. D (page 4 of 9)

```
Name: _____
```

(6 points) 5. Let $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3\}$ be two bases of \mathbb{R}^3 , where

$$\begin{bmatrix} \mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 5 & -1 & -5 \end{bmatrix}, \quad \begin{bmatrix} \mathbf{c}_1 \ \mathbf{c}_2 \ \mathbf{c}_3 \end{bmatrix} = \begin{bmatrix} 1 & -2 & -1 \\ -2 & 3 & 1 \\ 5 & -14 & -8 \end{bmatrix}.$$

Compute the change-of-coordinates matrix from ${\mathcal B}$ to ${\mathcal C}.$ Sol:

$$\begin{bmatrix} 1 & -2 & -1 & 1 & -1 & 0 \\ -2 & 3 & 1 & -1 & 2 & -1 \\ 5 & -14 & -8 & 5 & -1 & -5 \end{bmatrix} \xrightarrow{r_2 \to r_2 + 2r_1} r_3 \to r_3 - 5r_1 \begin{bmatrix} 1 & -2 & -1 & 1 & -1 & 0 \\ 0 & -1 & -1 & 1 & 0 & -1 \\ 0 & -4 & -3 & 0 & 4 & -5 \end{bmatrix} \sim r_3 \to r_3 - 4r_2 \begin{bmatrix} 1 & -2 & -1 & 1 & -1 & 0 \\ 0 & -4 & -3 & 0 & 4 & -5 \end{bmatrix} \sim r_3 \to r_3 - 4r_2 \begin{bmatrix} 1 & -2 & -1 & 1 & -1 & 0 \\ 0 & -1 & -1 & 1 & 0 & -1 \\ 0 & 0 & 1 & -4 & 4 & -1 \end{bmatrix}$$

$$\begin{array}{c} r_1 \to r_1 + r_3 \\ r_2 \to r_2 + r_3 \\ \sim_{\text{pivot at (3,3)}} & \begin{bmatrix} 1 & -2 & 0 & -3 & 3 & -1 \\ 0 & -1 & 0 & -3 & 4 & -2 \\ 0 & 0 & 1 & -4 & 4 & -1 \end{bmatrix} \\ \sim^{r_2 \to -r_2} \begin{bmatrix} 1 & -2 & 0 & -3 & 3 & -1 \\ 0 & 1 & 0 & 3 & -4 & 2 \\ 0 & 0 & 1 & -4 & 4 & -1 \end{bmatrix} \\ \sim_{\text{pivot at (2,2)}} & \begin{bmatrix} 1 & 0 & 0 & 3 & -5 & 3 \\ 0 & 1 & 0 & 3 & -4 & 2 \\ 0 & 0 & 1 & -4 & 4 & -1 \end{bmatrix}$$

The desired matrix is $\begin{bmatrix} 3 & -5 & 3 \\ 3 & -4 & 2 \\ -4 & 4 & -1 \end{bmatrix}$.

ver. D (page 5 of 9)

(6 points) 6. Diagonalize $A = \begin{bmatrix} 1 & 2 & -1 \\ -2 & -3 & 1 \\ -2 & -2 & 0 \end{bmatrix}$ if possible.

Sol: Step1: Compute the eigenvalues.

The characteristic polynomial is $\det(A - \lambda I) = \det \begin{bmatrix} 1 - \lambda & 2 & -1 \\ -2 & -3 - \lambda & 1 \\ -2 & -2 & -\lambda \end{bmatrix} = -\lambda (\lambda + 1)^2.$

Thus the eigenvalues are -1, 0, with multiplicity 2, 1, respectively.

Step 2: Compute the eigenvectors.

For $\lambda_1 = -1$, we have

$$\begin{bmatrix} 2 & 2 & -1 \\ -2 & -2 & 1 \\ -2 & -2 & 1 \end{bmatrix} \xrightarrow{r_2 \to r_2 + r_1} \begin{bmatrix} 2 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\sim^{r_1 \to 1/2 r_1} \begin{bmatrix} 1 & 1 & -1/2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The corresponding eigenvectors are
$$v_1 = \begin{bmatrix} 1/2 \\ 0 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}.$$

For $\lambda_2 = 0$, we have

$$\begin{bmatrix} 1 & 2 & -1 \\ -2 & -3 & 1 \\ -2 & -2 & 0 \end{bmatrix} \xrightarrow{r_2 \to r_2 + 2 r_1} \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -1 \\ 0 & 2 & -2 \end{bmatrix}$$
$$\xrightarrow{r_3 \to r_3 - 2 r_2} \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -1 \\ 0 & 2 & -2 \end{bmatrix}$$
$$\xrightarrow{r_3 \to r_3 - 2 r_2} \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\xrightarrow{r_1 \to r_1 - 2 r_2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

The corresponding eigenvectors are $v_3 = \begin{bmatrix} -1\\ 1\\ 1 \end{bmatrix}$. Step 3: construct *P*. Set $P = \begin{bmatrix} 1/2 & -1 & -1\\ 0 & 1 & 1\\ 1 & 0 & 1 \end{bmatrix}$.

Name: _____

Step 4: construct *D*. Set $D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

Thus A is diagonalizable and we have $A = PDP^{-1}$.

```
Name: _
```

7. Suppose that A is an $n \times n$ matrix. If $p(t) = a_0 + a_1t + a_2t^2 + a_3t^3$ is a polynomial, then define $p(A) = a_0I + a_1A + a_2A^2 + a_3A^3$. For instance if $p(t) = 1 - t^3$ then $p(A) = I - A^3$. Assume p(A) = O (the zero matrix) for $p(t) = (t^2 - 3)(t + 2)$.

(3 points) (a) Find all possible eigenvalues of A.

(3 points) (b) Show that A is invertible and represent A^{-1} in terms of q(A) for a polynomial q(t).

(a)
$$\sqrt{3}, -\sqrt{3}, -2$$

(b) $p(A) = (A^2 - 3I)(A + 2I) = A^3 + 2A^2 - 3A - 6I = O$
Thus $I = \frac{A^3 + 2A^2 - 3A}{6} = A \cdot \frac{A^2 + 2A - 3I}{6}$, and so $A^{-1} = \frac{A^2 + 2A - 3I}{6}$, i.e., $q(A) = \frac{A^2 + 2A - 3I}{6}$

ver. D (page 8 of 9)

Name: _____

(6 points) 8. The columns of $A = \begin{bmatrix} 0 & 4 & 2 \\ 2 & 2 & 0 \\ 1 & 2 & 4 \\ 1 & 0 & 0 \end{bmatrix}$ are linearly independent. Find an orthonormal basis for ColA, the column space of A.

Sol: Step 1: Set $\mathbf{v}_1 = \mathbf{x}_1$ and $W_1 = \operatorname{span}{\mathbf{v}_1}$.

Step 2:
$$\operatorname{proj}_{W_1} \mathbf{x}_2 = \begin{bmatrix} 0\\ 2\\ 1\\ 1\\ 1 \end{bmatrix}$$
,
Set $\mathbf{v}_2 = \begin{bmatrix} 4\\ 0\\ 1\\ -1 \end{bmatrix}$,
Step 3: $\operatorname{proj}_{W_2} \mathbf{x}_3 = \begin{bmatrix} 8/3\\ 4/3\\ 4/3\\ 0 \end{bmatrix}$,
Set $\mathbf{v}_3 = \begin{bmatrix} -2/3\\ -4/3\\ 8/3\\ 0 \end{bmatrix}$,

Therefore, the desired orthogonal basis is $\begin{cases} \begin{bmatrix} 0\\2\\1\\1 \end{bmatrix} \begin{bmatrix} 4\\0\\1\\-1 \end{bmatrix} \begin{bmatrix} -2/3\\-4/3\\8/3\\0 \end{bmatrix} \end{cases}.$ The desired orthonormal basis is $\begin{cases} \begin{bmatrix} 0\\1/3\sqrt{6}\\1/6\sqrt{6}\\1/6\sqrt{6} \end{bmatrix} \begin{bmatrix} 2/3\sqrt{2}\\0\\1/6\sqrt{2}\\-1/6\sqrt{2} \end{bmatrix} \begin{bmatrix} -1/21\sqrt{21}\\-2/21\sqrt{21}\\\frac{4}{21}\sqrt{21}\\0 \end{bmatrix} \end{cases}.$

```
Name: _____
```

9. Let S be an $n \times n$ matrix satisfying $||S\mathbf{x}|| = ||\mathbf{x}||$ for all \mathbf{x} in \mathbb{R}^n .

(3 points) (a) Show that $S\mathbf{x} \cdot S\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ holds for all \mathbf{x}, \mathbf{y} in \mathbb{R}^n .

(3 points)

(b) Show that S is an orthogonal matrix. Set (a) Consider for any $z \in \mathbb{R}^n$

Sol: (a) Consider for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$||S(\mathbf{x} + \mathbf{y})||^{2} = ||S\mathbf{x} + S\mathbf{y}||^{2} = (S\mathbf{x} + P\mathbf{y}) \cdot (S\mathbf{x} + S\mathbf{y})$$

$$= S\mathbf{x} \cdot S\mathbf{x} + S\mathbf{y} \cdot S\mathbf{y} + 2(S\mathbf{x} \cdot S\mathbf{y})$$

$$= ||S\mathbf{x}||^{2} + ||S\mathbf{y}||^{2} + 2(S\mathbf{x} \cdot S\mathbf{y}) = ||\mathbf{x}||^{2} + ||\mathbf{y}||^{2} + 2(S\mathbf{x} \cdot S\mathbf{y}) \quad (1)$$

Meanwhile, according to the condition,

$$||S(\mathbf{x}+\mathbf{y})||^{2} = ||\mathbf{x}+\mathbf{y}||^{2} = (\mathbf{x}+\mathbf{y})\cdot(\mathbf{x}+\mathbf{y}) = \mathbf{x}\cdot\mathbf{x}+\mathbf{y}\cdot\mathbf{y}+2(\mathbf{x}\cdot\mathbf{y}) = ||x^{2}||+||y||^{2}+2(\mathbf{x}\cdot\mathbf{y})$$
(2)

Thus combining (1) and (2) we get $S\mathbf{x} \cdot S\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$. (b) Let $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ be the set of canonical bases of \mathbb{R}^n such that $I_n = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_n \end{bmatrix}$. Also write $S = \begin{bmatrix} \mathbf{s}_1 & \mathbf{s}_2 & \cdots & \mathbf{s}_n \end{bmatrix}$, where \mathbf{q}_i denotes the i-th column of S. Then for each $0 \leq i, j \leq n, \mathbf{s}_i = S \cdot \mathbf{e}_i$ and $\mathbf{s}_j = S \cdot \mathbf{e}_j$. So by (a) we know

$$\mathbf{s}_i \cdot \mathbf{s}_j = (S \cdot \mathbf{e}_i) \cdot (S \cdot \mathbf{e}_j) = \mathbf{e}_i \cdot \mathbf{e}_j = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Thus $S^T S = I_n$, which implies that S is an orthonormal matrix. In particular, S is an orthogonal matrix.