\qquad

Instructions

1. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
2. You may use one handwritten page of notes, but no books or other assistance during this exam.
3. Read each question carefully and answer each question completely.
4. Show all of your work. No credit will be given for unsupported answers, even if correct.
5. Write your Name at the top of each page.
(1 point) 0 . Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
(6 points) 1. Let $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 0 & -2 \\ -5 & 7 & -3\end{array}\right]$
(a) Find the RREF (reduced row echelon form) of A.

Sol.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 0 & -2 \\
-5 & 7 & -3
\end{array}\right] \underset{\text { pivot at }(1,1)}{\left.\left.\begin{array}{l}
r_{2} \rightarrow r_{2}+r_{1} \\
r_{3} \rightarrow r_{3}+5 r_{1}
\end{array}\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & -1 & -1 \\
0 & 2 & 2
\end{array}\right], ~\right], ~\right]}} \\
& \underset{\text { pivot at }(2,2)}{r_{3} \rightarrow r_{3}+2 r_{2}}\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & -1 & -1 \\
0 & 0 & 0
\end{array}\right] \\
& \sim^{r_{2} \rightarrow-r_{2}}\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \\
& \underset{\text { pivot at }(2,2)}{r_{1} \rightarrow r_{1}+r_{2}}\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

(b) Describe the solution set of the homogeneous equation $A \mathbf{x}=\mathbf{0}$.

The corresponding linear system is $\left\{\begin{array}{l}x_{1}=-2 x_{3} \\ x_{2}=-x_{3} \\ x_{3}=x_{3}, \quad \text { (free) }\end{array}\right.$
So the general solution is given by: $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{r}-2 \\ -1 \\ 1\end{array}\right]$, where x_{3} is arbitrary.
\qquad
(6 points) 2. Determine if the following system of linear equations is consistent or not. If the system is consistent, describe the solution set by using parametric form.

Sol. We work on the corresponding augmented matrix.

$$
\begin{aligned}
{\left[\begin{array}{ccccc}
0 & 0 & 1 & 2 & 1 \\
1 & -3 & 1 & 4 & 1 \\
-1 & 3 & 4 & 6 & 4
\end{array}\right] } & \sim^{r_{1} \leftrightarrow r_{2}\left[\begin{array}{ccccc}
1 & -3 & 1 & 4 & 1 \\
0 & 0 & 1 & 2 & 1 \\
-1 & 3 & 4 & 6 & 4
\end{array}\right]} \begin{aligned}
& \\
& \sim_{\text {pivot at }(1,1)}^{r_{3} \rightarrow r_{3}+r_{1}}\left[\begin{array}{ccccc}
1 & -3 & 1 & 4 & 1 \\
0 & 0 & 1 & 2 & 1 \\
0 & 0 & 5 & 10 & 5
\end{array}\right] \\
& \sim_{\text {pivot at }(2,3)}^{r_{3} \rightarrow r_{3}-5 r_{2}}\left[\begin{array}{ccccc}
1 & -3 & 1 & 4 & 1 \\
0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \sim_{\text {pivot at }(2,3)}^{r_{1} \rightarrow r_{1}-r_{2}}\left[\begin{array}{ccccc}
1 & -3 & 0 & 2 & 0 \\
0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned},
\end{aligned}
$$

From the RREF we write down the corresponding linear system: $\left\{\begin{array}{l}x_{1}=3 x_{2}-2 x_{4} \\ x_{2}=x_{2} \\ x_{3}=-2 x_{4}+1 \\ x_{4}=x_{4}\end{array}\right.$.Thus the general solution is $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=x_{2}\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{r}-2 \\ 0 \\ -2 \\ 1\end{array}\right]+\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$,
where x_{2} and x_{4} are free.

Name: \qquad
(6 points) 3. For each $k \in \mathbb{R}$, let S_{k} be the set of vectors in \mathbb{R}^{3} given by $S_{k}=\left\{\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -3 \\ 3\end{array}\right],\left[\begin{array}{c}-3 \\ 4 \\ k\end{array}\right]\right\}$.
For each of parts (a) - (c), find the value(s) of k for which S_{k} has the indicated property. Be sure to show how you arrived at each answer.
(a) S_{k} is linearly dependent.

Sol. We need to use the REF to answer the questions. We have

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 2 & -3 \\
-2 & -3 & 4 \\
1 & 3 & k
\end{array}\right]}
\end{gathered} \begin{gathered}
\begin{array}{c}
r_{2} \rightarrow r_{2}+2 r_{1} \\
r_{3} \rightarrow r_{3}-r_{1} \\
\text { pivot at }(1,1)
\end{array} \\
\\
\left.\underset{\substack{\text { pivot at }(2,2)}}{\substack{r_{3} \rightarrow r_{3}-r_{2} \\
0 \\
0 \\
1}} \begin{array}{ccc}
k+3
\end{array}\right]
\end{gathered}\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & 1 & -2 \\
0 & 0 & k+5
\end{array}\right]
$$

Thus when $k=-5, S_{k}$ is linearly dependent.
(b) S_{k} is linearly independent.

Sol. When $k \neq-5, S_{k}$ is linearly independent.
(c) S_{k} spans \mathbb{R}^{3}.

Sol. When $k \neq-5, S_{k}$ spans \mathbb{R}^{3}

Name:

\qquad
(6 points) 4. Suppose that $T_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $T_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ are linear transformations. Moreover the standard matrices of T_{1} and T_{2} are given by

$$
T_{1}(\mathbf{x})=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-5 & -4 & 1 \\
4 & 3 & -2
\end{array}\right] \mathbf{x}, \quad T_{2}(\mathbf{x})=\left[\begin{array}{ccc}
1 & 3 & 2 \\
-2 & -5 & 4
\end{array}\right] \mathbf{x} .
$$

Find the standard matrix of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T(\mathbf{x})=$ $T_{2}\left(T_{1}(\mathbf{x})\right)$.

Sol. If we write $T_{1}(\mathbf{x})=A \mathbf{x}$ and $T_{2}(\mathbf{x})=B \mathbf{x}$, then $T_{2}\left(T_{1}(\mathbf{x})\right)=T_{2}(A \mathbf{x})=B A \mathbf{x}$. Thus $B A$ is the standard matrix.

For our problem, we have

$$
B A=\left[\begin{array}{ccc}
1 & 3 & 2 \\
-2 & -5 & 4
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
-5 & -4 & 1 \\
4 & 3 & -2
\end{array}\right]=\left[\begin{array}{ccc}
-6 & -5 & 0 \\
39 & 30 & -15
\end{array}\right]
$$

Alternatively, the standard matrix is given by $\left[T\left(\mathbf{e}_{1}\right) T\left(\mathbf{e}_{2}\right) T\left(\mathbf{e}_{3}\right)\right]$. The computation is straightforward, so I omit the details.
\qquad

Instructions

1. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
2. You may use one handwritten page of notes, but no books or other assistance during this exam.
3. Read each question carefully and answer each question completely.
4. Show all of your work. No credit will be given for unsupported answers, even if correct.
5. Write your Name at the top of each page.
(1 point) 0 . Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
(6 points) 1. Let $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 0 & -3 \\ -5 & 7 & -1\end{array}\right]$
(a) Find the RREF (reduced row echelon form) of A.

Sol.

$$
\begin{aligned}
{\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 0 & -3 \\
-5 & 7 & -1
\end{array}\right] } & \begin{array}{c}
r_{2} \rightarrow r_{2}+r_{1} \\
r_{\text {pivot at }(1,1)} \rightarrow r_{3}+5 r_{1}
\end{array}\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & -1 & -2 \\
0 & 2 & 4
\end{array}\right] \\
& \begin{array}{c}
r_{3} \rightarrow r_{3}+2 r_{2}
\end{array}\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & -1 & -2 \\
0 & 0 & 0
\end{array}\right] \\
& \sim_{\text {pivot at }(2,2)}^{r_{2} \rightarrow-r_{2}}\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \\
& \sim_{\text {pivot at }(2,2)}^{r_{1} \rightarrow r_{1}+r_{2}}\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

(b) Describe the solution set of the homogeneous equation $A \mathbf{x}=\mathbf{0}$.

The corresponding linear system is $\left\{\begin{array}{l}x_{1}=-3 x_{3} \\ x_{2}=-2 x_{3} \\ x_{3}=x_{3} \text { (free) }\end{array}\right.$
So the general solution is given by: $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{r}-3 \\ -2 \\ 1\end{array}\right]$, where x_{3} is arbitrary.

Name:

\qquad
(6 points) 2. Determine if the following system of linear equations is consistent or not. If the system is consistent, describe the solution set by using parametric form.

Sol. We work on the corresponding augmented matrix.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
0 & 0 & 1 & 2 & 1 \\
1 & -3 & 1 & 4 & 2 \\
-1 & 3 & 4 & 6 & 3
\end{array}\right] \sim^{r_{1} \leftrightarrow r_{2}}\left[\begin{array}{ccccc}
1 & -3 & 1 & 4 & 2 \\
0 & 0 & 1 & 2 & 1 \\
-1 & 3 & 4 & 6 & 3
\end{array}\right]} \\
& \underset{\text { pivot at (1,1) }}{r_{3} \rightarrow r_{3}+r_{1}}\left[\begin{array}{ccccc}
1 & -3 & 1 & 4 & 2 \\
0 & 0 & 1 & 2 & 1 \\
0 & 0 & 5 & 10 & 5
\end{array}\right] \\
& \underset{\text { pivot at }(2,3)}{r_{3} \rightarrow r_{3}-5 r_{2}}\left[\begin{array}{ccccc}
1 & -3 & 1 & 4 & 2 \\
0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \underset{\text { pivot at }(2,3)}{r_{1} \rightarrow r_{1}-r_{2}}\left[\begin{array}{ccccc}
1 & -3 & 0 & 2 & 1 \\
0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

From the RREF we write down the corresponding linear system: $\left\{\begin{array}{l}x_{1}=3 x_{2}-2 x_{4}+1 \\ x_{2}=x_{2} \\ x_{3}=-2 x_{4}+1 \\ x_{4}=x_{4}\end{array}\right.$. Thus the general solution is: $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=x_{2}\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{r}-2 \\ 0 \\ -2 \\ 1\end{array}\right]+\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]$

Name: \qquad
(6 points) 3 . For each $k \in \mathbb{R}$, let S_{k} be the set of vectors in \mathbb{R}^{3} given by $S_{k}=\left\{\left[\begin{array}{c}1 \\ -2 \\ 5\end{array}\right],\left[\begin{array}{c}2 \\ -3 \\ 1\end{array}\right],\left[\begin{array}{c}-3 \\ 4 \\ k\end{array}\right]\right\}$.
For each of parts (a) - (c), find the value(s) of k for which S_{k} has the indicated property. Be sure to show how you arrived at each answer.
(a) S_{k} is linearly dependent.

Sol. We need to use the REF to answer the questions. We have "

$$
\begin{aligned}
{\left[\begin{array}{ccc}
1 & 2 & -3 \\
-2 & -3 & 4 \\
5 & 1 & k
\end{array}\right] } & \begin{array}{c}
r_{2} \rightarrow r_{2}+2 r_{1} \\
r_{3} \rightarrow r_{3}-5 r_{1} \\
\text { pivot at }(1,1)
\end{array} \\
& \begin{array}{ccc}
r_{3} \rightarrow r_{3}+9 r_{2}
\end{array}\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & 1 & -2 \\
0 & -9 & k+15
\end{array}\right]
\end{aligned}
$$

Thus when $k=3, S_{k}$ is linearly dependent.
(b) S_{k} is linearly independent.

Sol. When $k \neq 3, S_{k}$ is linearly independent.
(c) S_{k} spans \mathbb{R}^{3}.

Sol. When $k \neq 3, S_{k}$ spans \mathbb{R}^{3}

Name:

\qquad
(6 points) 4. Suppose that $T_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $T_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ are linear transformations. Moreover the standard matrices of T_{1} and T_{2} are given by

$$
T_{1}(\mathbf{x})=\left[\begin{array}{ccc}
1 & 1 & 2 \\
-5 & -4 & 1 \\
4 & 3 & -2
\end{array}\right] \mathbf{x}, \quad T_{2}(\mathbf{x})=\left[\begin{array}{ccc}
1 & 3 & 2 \\
-2 & -5 & 2
\end{array}\right] \mathbf{x} .
$$

Find the standard matrix of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T(\mathbf{x})=$ $T_{2}\left(T_{1}(\mathbf{x})\right)$.

Sol. If we write $T_{1}(\mathbf{x})=A \mathbf{x}$ and $T_{2}(\mathbf{x})=B \mathbf{x}$, then $T_{2}\left(T_{1}(\mathbf{x})\right)=T_{2}(A \mathbf{x})=B A \mathbf{x}$. Thus $B A$ is the standard matrix.

For our problem, we have

$$
B A=\left[\begin{array}{ccc}
1 & 3 & 2 \\
-2 & -5 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 2 \\
-5 & -4 & 1 \\
4 & 3 & -2
\end{array}\right]=\left[\begin{array}{ccc}
-6 & -5 & 1 \\
31 & 24 & -13
\end{array}\right]
$$

Alternatively, the standard matrix is given by $\left[T\left(\mathbf{e}_{1}\right) T\left(\mathbf{e}_{2}\right) T\left(\mathbf{e}_{3}\right)\right]$. The computation is straightforward, so I omit the details.
\qquad

Instructions

1. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
2. You may use one handwritten page of notes, but no books or other assistance during this exam.
3. Read each question carefully and answer each question completely.
4. Show all of your work. No credit will be given for unsupported answers, even if correct.
5. Write your Name at the top of each page.
(1 point) 0. Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
(6 points) 1. Let $A=\left[\begin{array}{ccc}1 & -1 & -1 \\ -1 & 0 & 2 \\ -5 & 7 & 3\end{array}\right]$
(a) Find the RREF (reduced row echelon form) of A.

Sol.

$$
\begin{aligned}
{\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 0 & 2 \\
-5 & 7 & 3
\end{array}\right] } & \begin{array}{l}
r_{2} \rightarrow r_{2}+r_{1} \\
r_{\text {pivot at }(1,1)} \rightarrow r_{3}+5 r_{1}
\end{array}\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & -1 & 1 \\
0 & 2 & -2
\end{array}\right] \\
& \begin{array}{c}
r_{3} \rightarrow r_{3}+2 r_{2}
\end{array}\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right] \\
& \sim_{\text {pivot at }(2,2)}^{r_{2} \rightarrow-r_{2}}\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \\
& \sim_{\text {pivot at }(2,2)}^{r_{1} \rightarrow r_{1}+r_{2}}\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

(b) Describe the solution set of the homogeneous equation $A \mathbf{x}=\mathbf{0}$.

The corresponding linear system is $\left\{\begin{array}{l}x_{1}=2 x_{3} \\ x_{2}=x_{3} \\ x_{3}=x_{3} \text { (free) }\end{array}\right.$
So the general solution is given by: $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$, where x_{3} is arbitrary.

Name:

\qquad
(6 points) 2. Determine if the following system of linear equations is consistent or not. If the system is consistent, describe the solution set by using parametric form.

Sol. We work on the corresponding augmented matrix.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
0 & 0 & 1 & 2 & -1 \\
1 & -3 & 1 & 4 & -1 \\
-1 & 3 & 4 & 6 & -4
\end{array}\right] \sim^{r_{1} \leftrightarrow r_{2}}\left[\begin{array}{ccccc}
1 & -3 & 1 & 4 & -1 \\
0 & 0 & 1 & 2 & -1 \\
-1 & 3 & 4 & 6 & -4
\end{array}\right]} \\
& \underset{\text { pivot at }(1,1)}{r_{3} \rightarrow r_{3}}+r_{1}\left[\begin{array}{ccccc}
1 & -3 & 1 & 4 & -1 \\
0 & 0 & 1 & 2 & -1 \\
0 & 0 & 5 & 10 & -5
\end{array}\right] \\
& \underset{\text { pivot at }(2,3)}{r_{3} \rightarrow r_{3}-5} r_{2}\left[\begin{array}{ccccc}
1 & -3 & 1 & 4 & -1 \\
0 & 0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \underset{\text { pivot at (2,3) }}{r_{1} \rightarrow r_{1}-r_{2}}\left[\begin{array}{ccccc}
1 & -3 & 0 & 2 & 0 \\
0 & 0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

From the RREF we write down the corresponding linear system: $\left\{\begin{array}{l}x_{1}=3 x_{2}-2 x_{4} \\ x_{2}=x_{2} \\ x_{3}=-2 x_{4}-1 \\ x_{4}=x_{4}\end{array}\right.$. Thus the general solution is: $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=x_{2}\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{r}-2 \\ 0 \\ -2 \\ 1\end{array}\right]+\left[\begin{array}{r}0 \\ 0 \\ -1 \\ 0\end{array}\right]$

Name: \qquad
(6 points) 3 . For each $k \in \mathbb{R}$, let S_{k} be the set of vectors in \mathbb{R}^{3} given by $S_{k}=\left\{\left[\begin{array}{c}1 \\ -2 \\ 4\end{array}\right],\left[\begin{array}{c}2 \\ -3 \\ 1\end{array}\right],\left[\begin{array}{c}-3 \\ 4 \\ k\end{array}\right]\right\}$.
For each of parts (a) - (c), find the value(s) of k for which S_{k} has the indicated property. Be sure to show how you arrived at each answer.
(a) S_{k} is linearly dependent.

Sol. We need to use the REF to answer the questions. We have

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 2 & -3 \\
-2 & -3 & 4 \\
4 & 1 & k
\end{array}\right]} \\
\underset{\substack{r_{2} \rightarrow r_{2}+2 r_{1} \\
r_{\text {pivot at }(1,1)} \rightarrow r_{3}-4 r_{1} \\
r_{\text {pivot at }(2,2)} \rightarrow r_{3}+7 r_{2}}}{ }\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & 1 & -2 \\
0 & -7 & k+12
\end{array}\right]
\end{gathered}
$$

Thus when $k=2, S_{k}$ is linearly dependent.
(b) S_{k} is linearly independent.

Sol. When $k \neq 2, S_{k}$ is linearly independent.
(c) S_{k} spans \mathbb{R}^{3}.

Sol. When $k \neq 2, S_{k}$ spans \mathbb{R}^{3}

Name:

\qquad
(6 points) 4. Suppose that $T_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $T_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ are linear transformations. Moreover the standard matrices of T_{1} and T_{2} are given by

$$
T_{1}(\mathbf{x})=\left[\begin{array}{ccc}
1 & 1 & 3 \\
-5 & -4 & 1 \\
4 & 3 & -2
\end{array}\right] \mathbf{x}, \quad T_{2}(\mathbf{x})=\left[\begin{array}{ccc}
1 & 3 & 2 \\
-2 & -5 & -2
\end{array}\right] \mathbf{x} .
$$

Find the standard matrix of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T(\mathbf{x})=$ $T_{2}\left(T_{1}(\mathbf{x})\right)$.

Sol. If we write $T_{1}(\mathbf{x})=A \mathbf{x}$ and $T_{2}(\mathbf{x})=B \mathbf{x}$, then $T_{2}\left(T_{1}(\mathbf{x})\right)=T_{2}(A \mathbf{x})=B A \mathbf{x}$. Thus $B A$ is the standard matrix.

For our problem, we have

$$
B A=\left[\begin{array}{ccc}
1 & 3 & 2 \\
-2 & -5 & -2
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 3 \\
-5 & -4 & 1 \\
4 & 3 & -2
\end{array}\right]=\left[\begin{array}{ccc}
-6 & -5 & 2 \\
15 & 12 & -7
\end{array}\right] .
$$

Alternatively, the standard matrix is given by $\left[T\left(\mathbf{e}_{1}\right) T\left(\mathbf{e}_{2}\right) T\left(\mathbf{e}_{3}\right)\right]$. The computation is straightforward, so I omit the details.

Math 18D
February 1, 2017

Midterm Exam 1 ver. D Name:
(Total Points: 25) PID: \qquad

Instructions

1. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
2. You may use one handwritten page of notes, but no books or other assistance during this exam.
3. Read each question carefully and answer each question completely.
4. Show all of your work. No credit will be given for unsupported answers, even if correct.
5. Write your Name at the top of each page.
(1 point) 0 . Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.
(6 points) 1. Let $A=\left[\begin{array}{ccc}1 & -1 & -1 \\ -1 & 0 & 3 \\ -5 & 7 & 1\end{array}\right]$
(a) Find the RREF (reduced row echelon form) of A.

Sol.

$$
\begin{array}{cc}
{\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 0 & 3 \\
-5 & 7 & 1
\end{array}\right]} & \begin{array}{c}
r_{2} \rightarrow r_{2}+r_{1} \\
r_{3} \rightarrow r_{3}+5 r_{1}
\end{array}\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & -1 & 2 \\
0 & 2 & -4
\end{array}\right] \\
& \sim_{\text {pivot at }(1,1)} \begin{aligned}
r_{3} \rightarrow r_{3}+2 r_{2}
\end{aligned}\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & -1 & 2 \\
0 & 0 & 0
\end{array}\right] \\
& \sim_{\text {pivot at }(2,2)}^{r_{2} \rightarrow-r_{2}}\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right] \\
& \sim_{\text {pivot at }(2,2)} \rightarrow r_{1}+r_{2}\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]
\end{array}
$$

(b) Describe the solution set of the homogeneous equation $A \mathbf{x}=\mathbf{0}$.

The corresponding linear system is $\left\{\begin{array}{l}x_{1}=3 x_{3} \\ x_{2}=2 x_{3} \\ x_{3}=x_{3} \text { (free) }\end{array}\right.$
So the general solution is given by: $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$, where x_{3} is arbitrary.

Name:

\qquad
(6 points) 2. Determine if the following system of linear equations is consistent or not. If the system is consistent, describe the solution set by using parametric form.

Sol. We work on the corresponding augmented matrix.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
0 & 0 & 1 & 2 & -1 \\
1 & -3 & 1 & 4 & -2 \\
-1 & 3 & 4 & 6 & -3
\end{array}\right] \sim^{r_{1} \leftrightarrow r_{2}}\left[\begin{array}{ccccc}
1 & -3 & 1 & 4 & -2 \\
0 & 0 & 1 & 2 & -1 \\
-1 & 3 & 4 & 6 & -3
\end{array}\right]} \\
& \underset{\text { pivot at }(1,1)}{r_{3} \rightarrow r_{3}}+r_{1}\left[\begin{array}{ccccc}
1 & -3 & 1 & 4 & -2 \\
0 & 0 & 1 & 2 & -1 \\
0 & 0 & 5 & 10 & -5
\end{array}\right] \\
& \underset{\text { pivot at }(2,3)}{r_{3} \rightarrow r_{3}-5 r_{2}}\left[\begin{array}{ccccc}
1 & -3 & 1 & 4 & -2 \\
0 & 0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \underset{\text { pivot at (2,3) }}{r_{1} \rightarrow r_{1}-r_{2}}\left[\begin{array}{ccccc}
1 & -3 & 0 & 2 & -1 \\
0 & 0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

From the RREF we write down the corresponding linear system: $\left\{\begin{array}{l}x_{1}=3 x_{2}-2 x_{4}-1 \\ x_{2}=x_{2} \\ x_{3}=-2 x_{4}-1 \\ x_{4}=x_{4}\end{array}\right.$.
Thus the general solution is: $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=x_{2}\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{r}-2 \\ 0 \\ -2 \\ 1\end{array}\right]+\left[\begin{array}{r}-1 \\ 0 \\ -1 \\ 0\end{array}\right]$

Name: \qquad
(6 points) 3 . For each $k \in \mathbb{R}$, let S_{k} be the set of vectors in \mathbb{R}^{3} given by $S_{k}=\left\{\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -3 \\ 2\end{array}\right],\left[\begin{array}{c}-3 \\ 4 \\ k\end{array}\right]\right\}$.
For each of parts (a) - (c), find the value(s) of k for which S_{k} has the indicated property. Be sure to show how you arrived at each answer.
(a) S_{k} is linearly dependent.

Sol. We need to use the REF to answer the questions. We have

$$
\left[\begin{array}{ccc}
1 & 2 & -3 \\
-2 & -3 & 4 \\
1 & 2 & k
\end{array}\right] \underset{\text { pivot at }(1,1)}{\left.\begin{array}{l}
r_{2} \rightarrow r_{2}+2 r_{1} \\
r_{3} \rightarrow r_{3}-r_{1}
\end{array}\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & 1 & -2 \\
0 & 0 & k+3
\end{array}\right], ~\right]}
$$

Thus when $k=-3, S_{k}$ is linearly dependent.
(b) S_{k} is linearly independent.

Sol. When $k \neq-3, S_{k}$ is linearly independent.
(c) S_{k} spans \mathbb{R}^{3}.

Sol. When $k \neq-3, S_{k}$ spans \mathbb{R}^{3}

Name:

\qquad
(6 points) 4. Suppose that $T_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $T_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ are linear transformations. Moreover the standard matrices of T_{1} and T_{2} are given by

$$
T_{1}(\mathbf{x})=\left[\begin{array}{ccc}
1 & 1 & 4 \\
-5 & -4 & 1 \\
4 & 3 & -2
\end{array}\right] \mathbf{x}, \quad T_{2}(\mathbf{x})=\left[\begin{array}{ccc}
1 & 3 & 2 \\
-2 & -5 & -4
\end{array}\right] \mathbf{x} .
$$

Find the standard matrix of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T(\mathbf{x})=$ $T_{2}\left(T_{1}(\mathbf{x})\right)$.

Sol. If we write $T_{1}(\mathbf{x})=A \mathbf{x}$ and $T_{2}(\mathbf{x})=B \mathbf{x}$, then $T_{2}\left(T_{1}(\mathbf{x})\right)=T_{2}(A \mathbf{x})=B A \mathbf{x}$. Thus $B A$ is the standard matrix.

For our problem, we have

$$
B A=\left[\begin{array}{ccc}
1 & 3 & 2 \\
-2 & -5 & -4
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 4 \\
-5 & -4 & 1 \\
4 & 3 & -2
\end{array}\right]=\left[\begin{array}{ccc}
-6 & -5 & 3 \\
7 & 6 & -5
\end{array}\right] .
$$

Alternatively, the standard matrix is given by $\left[T\left(\mathbf{e}_{1}\right) T\left(\mathbf{e}_{2}\right) T\left(\mathbf{e}_{3}\right)\right]$. The computation is straightforward, so I omit the details.

