1. Consider the matrices
$$A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & 1 & 0 \\ 1 & -3 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 0 \\ 1 & -1 & -1 \end{bmatrix}$.

(a) Find det A and det B.

(b) Find det A^{-1} and det A^2B .

(c) Is A^3B^3 invertible?

2. Find a basis for Row A, Nul A and for Col A, where

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & -1 \\ 1 & 1 & 2 \end{bmatrix}.$$

3. (a) If a 4 x 5 matrix A has rank 2, find dimRow(A).

(b) If a 5 x 6 matrix A has rank 3, find Rank A^T .

(c) If A is a 7 x 9 matrix, what is the largest possible rank of A?

4. Let \mathcal{B} and \mathcal{C} be two bases for the vector space \mathbb{R}^2 .

(a) If
$$\mathcal{B} = \{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix} \}$$
 and $\mathcal{C} = \{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \end{bmatrix} \}$, find the change of coordinates matrix from \mathcal{B} to \mathcal{C} .

(b) Prove that the inverse of the change of coordinates matrix from \mathcal{B} to \mathcal{C} is the change of coordinates matrix from \mathcal{C} to \mathcal{B} .

- 5. Let A and B be two $n \ge n$ matrices.
 - (a) Prove that Col $(AB) \subset$ Col A.

(b) If B is invertible, prove that $\operatorname{Col}(AB) = \operatorname{Col} A$.

6. Let $A = \begin{bmatrix} 2 & 3 \\ 0 & -1 \end{bmatrix}$. (You should try this problem after Tuesday, after we cover eigenvalues.) (a) Find the eigenvalues of A and the associate eigenvectors.

(b) Prove that A is diagonalizable and find P invertible D diagonal such that $A = PDP^{-1}$.

7. (a) Let A be an $n \ge n$ matrix such that Ax = 0 for all $x \in \mathbb{R}^n$. Prove that $A^T x = 0$ for all $x \in \mathbb{R}^n$.

(b) Let A be a $n \times n$ matrix with real entries such that $A^T A = 0$. Prove that A = 0.

(c) Let A be a 2×2 matrix such that $A^2 = I_2$. Is it true that $A = I_2$? Justify your answer.

8. Let $\mathbb{M}_2(\mathbb{R})$ be the vector space of all 2x2 matrices with real entries. Denote by

$$H = \{A \in \mathbb{M}_2(\mathbb{R}); A \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} A\}$$

(a) Prove that H is a subspace of $\mathbb{M}_2(\mathbb{R})$.

(b) Find a basis of H and the dimension of H.

(c) Find $A, B \in \mathbb{M}_2(\mathbb{R})$ such that $A \notin H, B \notin H$ and $AB \neq BA$.

HINTS:

1) For part (b), use Theorem 6, section 3.2. For (c), use Theorems 4 and 6, section 3.2.

3) For part (b), use that dim Row $A = \dim \text{Col } A^T$. You actually obtain using The Rank Theorem that $RankA = RankA^T$. For (c) the largest possible rank is 7 (why?).

4) Use Theorem 15, section 4.7 for (b).

5) Use the fact that if $A = [a_1 a_2 ..., a_n]$ then $Ax = x_1 a_1 + ... + x_n a_n$.

7) For (a), take x to be a vector e_i from the standard basis of \mathbb{R}^n . Conclude that actually A = 0. For (b), note that each of the diagonal entries of the matrix $A^T A$ is a sum of squares. If a sum of non-negative numbers is 0, then all those numbers are 0. For (c), try to find a counter example.

8) Write $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and note that H is the solution set of a linear system.