1. Consider the matrices $A=\left[\begin{array}{ccc}2 & 3 & -1 \\ 1 & 1 & 0 \\ 1 & -3 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 0 \\ 1 & -1 & -1\end{array}\right]$.
(a) Find $\operatorname{det} A$ and $\operatorname{det} B$.
(b) Find $\operatorname{det} A^{-1}$ and $\operatorname{det} A^{2} B$.
(c) Is $A^{3} B^{3}$ invertible?
2. Find a basis for Row $A, \operatorname{Nul} A$ and for $\operatorname{Col} A$, where

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 1 & -1 \\
1 & 1 & 2
\end{array}\right]
$$

3. (a) If a 4×5 matrix A has rank 2 , find $\operatorname{dimRow}(A)$.
(b) If a 5×6 matrix A has rank 3 , find Rank A^{T}.
(c) If A is a 7×9 matrix, what is the largest possible rank of A ?
4. Let \mathcal{B} and \mathcal{C} be two bases for the vector space \mathbb{R}^{2}.
(a) If $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{c}-2 \\ 1\end{array}\right]\right\}$ and $\mathcal{C}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 2\end{array}\right]\right\}$, find the change of coordinates matrix from \mathcal{B} to \mathcal{C}.
(b) Prove that the inverse of the change of coordinates matrix from \mathcal{B} to \mathcal{C} is the change of coordinates matrix from \mathcal{C} to \mathcal{B}.
5. Let A and B be two $n \times n$ matrices.
(a) Prove that $\operatorname{Col}(A B) \subset \operatorname{Col} A$.
(b) If B is invertible, prove that $\operatorname{Col}(A B)=\operatorname{Col} A$.
6. Let $A=\left[\begin{array}{cc}2 & 3 \\ 0 & -1\end{array}\right]$. (You should try this problem after Tuesday, after we cover eigenvalues.)
(a) Find the eigenvalues of A and the associate eigenvectors.
(b) Prove that A is diagonalizable and find P invertible D diagonal such that $A=P D P^{-1}$.
7. (a) Let A be an $n \times n$ matrix such that $A x=0$ for all $x \in \mathbb{R}^{n}$. Prove that $A^{T} x=0$ for all $x \in \mathbb{R}^{n}$.
(b) Let A be a $n \times n$ matrix with real entries such that $A^{T} A=0$. Prove that $A=0$.
(c) Let A be a 2×2 matrix such that $A^{2}=I_{2}$. Is it true that $A=I_{2}$? Justify your answer.
8. Let $\mathbb{M}_{2}(\mathbb{R})$ be the vector space of all 2×2 matrices with real entries. Denote by

$$
H=\left\{A \in \mathbb{M}_{2}(\mathbb{R}) ; A\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] A\right\}
$$

(a) Prove that H is a subspace of $\mathbb{M}_{2}(\mathbb{R})$.
(b) Find a basis of H and the dimension of H.
(c) Find $A, B \in \mathbb{M}_{2}(\mathbb{R})$ such that $A \notin H, B \notin H$ and $A B \neq B A$.

HINTS:

1) For part (b), use Theorem 6, section 3.2. For (c), use Theorems 4 and 6, section 3.2.
2) For part (b), use that dim Row $A=\operatorname{dim} \operatorname{Col} A^{T}$. You actually obtain using The Rank Theorem that $\operatorname{Rank} A=\operatorname{Rank} A^{T}$. For (c) the largest possible rank is 7 (why?).
3) Use Theorem 15, section 4.7 for (b).
4) Use the fact that if $A=\left[a_{1} a_{2} \ldots, a_{n}\right]$ then $A x=x_{1} a_{1}+\ldots+x_{n} a_{n}$.
5) For (a), take x to be a vector e_{i} from the standard basis of \mathbb{R}^{n}. Conclude that actually $A=0$. For (b), note that each of the diagonal entries of the matrix $A^{T} A$ is a sum of squares. If a sum of non-negative numbers is 0 , then all those numbers are 0 . For (c), try to find a counter example.
6) Write $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and note that H is the solution set of a linear system.
