Lecture 20 (May $18^{\text {th }}$)
Today's Lectwe: Non-Hom Systems of D.E.S.

$$
\underline{x}^{\prime}=A \underline{x}+\underline{f} \quad \text { "Normal Form" }
$$

If $f(t)=\binom{f_{1}(t)}{f_{n}(t)}=\underline{ } \quad \begin{aligned} & \text { the system is called } \\ & \text { "homogeneous" }\end{aligned}$
If $\underline{f}(t)=\binom{f_{1}(t)}{f_{n}(t)} \neq \underline{0} \begin{aligned} & \text { the system is called } \\ & \text { "non-homogeneous" }\end{aligned}$

To solve these types of systems we will use one of two methods:
(1) Method of undet coeff
(2) Variation of parameters

Solutions to non-hom DES
Recall : Solutions to $\underline{x}^{\prime}=A \underline{x}$

$$
\underline{x}(t)=c_{1} \underline{x}_{1}(t)+C_{2} \underline{x}_{2}(t)+\cdots+c_{n} \underline{x}_{n}(t)
$$

(can be deterto $x^{\prime}=A x$ mined using

Consturcted using initial conditions)
e-values and e-vectors

But in the case of a non-hom system we need to add on a particular solution $\underline{x}_{p}(t)$

The goal of the method of undeter mined coeff is to find this particular solution

General outline
(1) Examine $f(t)$ to determine a guess for the particular solution
(2) Substitute guess into equation
(3) Use the resulting equation to determine any of the unk now coefficients

Examples

$$
\begin{gathered}
x_{1}^{\prime}(t)=2 x_{1}(t)-t \\
x_{2}^{\prime}(t)=e x_{1}(t)-x_{2}(t)+e^{t} \\
\psi \\
x^{\prime}=A \underline{x}+\underline{f} \\
\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\left(\begin{array}{rr}
2 & 0 \\
-1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{-t}{e^{t}}
\end{gathered}
$$

Depending on $f(t)$ we make a guess for $\underline{x}_{p}(t)$
(1) $f(t)=\binom{2}{3}$ both numbers $\begin{aligned} & \Rightarrow \text { Guess: } \underline{x}_{p}(t)=\frac{a}{\sim}=\binom{a_{1}}{a_{2}} \\ & \\ & \text { constant } \\ & \text { vector. }\end{aligned}$
(2) $\underline{f}(t)=\binom{2}{t^{\prime}}$
\Rightarrow Guess:

$$
\underline{x}_{p}(t)=\frac{a}{\uparrow}+\underset{\text { tm }^{\prime}}{\hat{b}} t^{1}
$$

(3) $f(t)=\binom{2 t^{2}}{t}$ \Rightarrow Guess:

$$
\begin{aligned}
\underline{x}_{p}(t)= & \frac{a}{\uparrow}+\frac{b}{\uparrow} t+\frac{c}{\imath} t^{2} \\
& \text { constant } \\
& \text { vector }
\end{aligned}
$$

(4) $f(t)=\left(e^{e^{t}}\right)_{\text {linear poly. }}^{\substack{\text { exponential }}}$

$$
\underline{x}_{p}(t)=a e^{t}+\underline{b}+\underline{c} t
$$

These are deals ml the "unknown the exp coefficients"
(5) $\underline{f}(t)=\binom{e^{t}}{e^{-t}} \begin{aligned} & \text { two diff } \\ & \text { exponent }\end{aligned}$

$$
\Rightarrow \text { Guess : } \underline{x}_{p}(t)=a e^{t}+b e^{-t}
$$

(5) $\quad f(t)=\binom{e^{t}}{-e^{t}} \quad \begin{gathered}T w 0 \\ \text { relate }\end{gathered} e^{d}$
\Rightarrow Guess: in front of

$$
{\underset{x}{p}}(t)=\frac{a e^{t}}{\hat{N}}
$$

$$
\begin{aligned}
& \text { deals with } \text { wimping }_{\text {pots }}^{\text {bor }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6) } f(t)=\binom{e^{2 t}}{\cos (t)} \\
& \Rightarrow \text { Guess } \underline{x}_{p}=\underline{a}^{2 t}+\underline{b} \cos (t) \\
& +\underline{c} \sin (t)
\end{aligned}
$$

(7) $f(t)=\left(\begin{array}{l}e^{-t} \\ \sin (t) \\ \cos (2 t)\end{array}\right)$

Guess:

$$
\begin{aligned}
\underline{x}_{p}(t) & =\underline{a} e^{-t}+\underline{b} \sin (t)+\underline{c} \cos (t) \\
& +\underline{d} \cos (2 t)+\underline{e} \sin (2 t)
\end{aligned}
$$

Example Solve the DE

$$
\underline{x}^{\prime}=\underbrace{\left(\begin{array}{ccc}
1 & -2 & 2 \\
-2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right)}_{A} \underline{x}+\left(\begin{array}{c}
-9 t \\
0 \\
-18 t
\end{array}\right)
$$

(15) Find the general sols
to $\underline{x}^{\prime}=\left(\begin{array}{ccc}1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right) \underline{x}$
E-values: $\lambda=3,3,-3$

	$/$	I
E-vecturs		

0 \\
1\end{array}\right)\left($$
\begin{array}{c}-1 \\
1 \\
0\end{array}
$$\right)\left($$
\begin{array}{l}-1 \\
-1 \\
1\end{array}
$$\right)\)

3 Hom Solutions

$$
\begin{aligned}
& \underline{x}_{1}(t)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) e^{3 t} \\
& \underline{x}_{2}(t)=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right) e^{3 t} \\
& \underline{x}_{3}(t)=\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right) e^{-3 t}
\end{aligned}
$$

\Rightarrow General Hom Soln is:
$x(t)=c_{1}\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right) e^{3 t}+c_{2}\binom{-1}{1} e^{3 t}$

$$
+c_{3}\left(\begin{array}{l}
-1 \\
-1 \\
1
\end{array}\right) e^{-3 t}
$$

nd) To find the particular solution: Use method of under. cueff

$$
\begin{aligned}
& f(t)=\left(\begin{array}{c}
-9 t \\
0 \\
-18 t
\end{array}\right) \\
& \rightarrow \text { Guess: } \\
& \underline{x}_{p}(t)=a+b t
\end{aligned}
$$

Now sub into the $D E\left(\underline{x}=\underline{x}_{p}\right)$
(will need to diff \underline{x}_{p} before we can sub.)

$$
\begin{aligned}
\underline{x}_{p}^{\prime}(t) & =\frac{d}{d t}[\underline{a}+\underline{b} t] \\
& =\underline{0}+\underline{b} \\
& =\underline{b} \\
\underline{x}_{p}^{\prime}(t) & =\underline{b}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(\begin{array}{ccc}
1 & -2 & 2 \\
-2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right) \underline{x}-p}{A} \text { sub into } A x \text {. } \\
& =A(\underline{a}+\underline{b} t)
\end{aligned}
$$

$$
\begin{aligned}
& \text { nukuon } \\
& \text { (unventy) }
\end{aligned}
$$

original DE:

$$
\underline{x}^{\prime}=A \underline{x}+\left(\begin{array}{c}
-9 \\
0 \\
-18
\end{array}\right) t
$$

Having substituted $\underline{x}=\underline{x}_{p}$ we jot.

$$
\frac{B}{(+(\underline{O} t)}=[\underline{A}]+[\bar{A}] t+\left(\begin{array}{c}
-9 \\
0 \\
-18
\end{array}\right) t
$$

compare coefficients on both sides of eq? :
$[1]^{\text {constants }}$
$[t] \quad \underline{0}=A \underline{b}+\left(\begin{array}{c}-9 \\ -18 \\ -18\end{array}\right)$
pst solve $\underline{O}=A \underline{b}+\left(\begin{array}{c}-9 \\ -9 \\ -18\end{array}\right)$ for \underline{b} (Then weill solve for a)

$$
\begin{aligned}
& \underline{O}=A \underline{b}+\left(\begin{array}{c}
-9 \\
0 \\
-18
\end{array}\right) \\
& \left(\begin{array}{c}
9 \\
0 \\
18
\end{array}\right)=A \underline{b}
\end{aligned}
$$

ie) $\left(\begin{array}{ccc}1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=\left(\begin{array}{c}9 \\ 0 \\ 18\end{array}\right)$
$\operatorname{Matrix} E_{q}{ }^{n} \quad$ System of simultaneous Eqns

Solving we get

$$
\underline{b}=\left(\begin{array}{l}
5 \\
2 \\
4
\end{array}\right)
$$

Then we solve the pst $E q$ n: $A \underline{a}=\underline{b}$
ie. $\left(\begin{array}{rrr}1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)=\left(\begin{array}{l}5 \\ 2 \\ 4\end{array}\right)$

Solving this we get

$$
\underline{a}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)
$$

That means that:

$$
\begin{aligned}
\underline{x}_{p} & =\underline{a}+\underline{b} t \\
& =\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+\left(\begin{array}{l}
5 \\
2 \\
4
\end{array}\right) t \\
& =\left(\begin{array}{c}
1+5 t \\
2 t \\
2+4 t
\end{array}\right)
\end{aligned}
$$

General Non-Hom Sol -

$$
\underline{x}(t)=c_{1}\left(\begin{array}{c}
1 \\
0 \\
1
\end{array}\right) e^{3 t}+c_{2}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right) e^{3 t}
$$

$$
\begin{aligned}
& +c_{3}\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right) e^{-3 t}+\left(\begin{array}{c}
1+5 t \\
2 t \\
2+4 t
\end{array}\right) \\
& \hat{\sim}^{1} \\
& \text { Generol } \\
& \text { tomenens } \\
& \text { solion. }
\end{aligned}
$$

