Lecture 20 (May 18th)

Today's Lecture : Non-Hom Systems of D.E.S.

X = A X + D Normal Form"

 $if \underline{f}(t) = \begin{pmatrix} f_{1}(t) \\ \vdots \\ f_{n}(t) \end{pmatrix} = \underbrace{\circ}_{n} the system is called "homogeneous"$

 $if \underline{f}(t) = \begin{pmatrix} f_{1}(t) \\ f_{n}(t) \end{pmatrix} \neq \underline{\bigcirc} \quad \text{the system is called} \\ \begin{pmatrix} f_{n}(t) \\ f_{n}(t) \end{pmatrix} \neq \underline{\bigcirc} \quad \text{the system is called} \\ \\ \begin{pmatrix} non-homogeneous \\ non-homogeneous \end{pmatrix}$

To solve these types of systems we will use one of two methods:

D Method of undet coeff

2) Variation of parameters

The goal of the method of undetermined coeff is to find this particular solution

General Outline

unknown coefficients

Examples

$x_{1}(t) = 2x_{1}(t) - t$ $x_{2}(t) = -x_{1}(t) - x_{2}(t) + e^{t}$

Depending on f(t) we make

a guess for $x_p(t)$

$\frac{X}{P}(t) = \alpha e^{-t} + b \sin(t) + c \cos(t)$

$+ d\cos(2t) + e\sin(2t)$

Now subjinto the DE(X = Xp)(will need to diff x before we (an sub.)

compare coefficients on both sides of eq2:

That means that

General Non-Hom Sol-:

1

