Lecture 21 (May 20 th)
Today's Lectwe: Non-Hom Systems of D.E.S.
$\underline{x}^{\prime}=A \underline{x}+\underline{f}$ "Normal Form"
If $\underline{f}(t)=\binom{f_{1}(t)}{f_{n}(t)}=0 \quad \begin{gathered}\text { the system is called } \\ \text { "homogeneous" }\end{gathered}$ If $\underline{f}(t)=\binom{f(t)}{f_{n}(t)} \neq \underline{0} \begin{aligned} & \text { the system is called } \\ & \text { "non-homogeneous" }\end{aligned}$

To solve these types of systems we will use one of two methods:
(1) Method of under coeff (prev lecture)
(2) Variation of parameters

Recall (from 2 ${ }^{\text {nd }}$ wader MEs)
Idea: The particular solution $y_{p}(t)$ should look like

Method let's you calculate v_{1} and v_{2} using integration...

To replicate this technique in the context of systems of DE

$$
\underline{x}_{1}(t), \underline{x}_{2}(t), \ldots, \underline{x}_{n}(t)
$$

$$
\begin{aligned}
& \text { Sol }_{0}^{n} \text { s to } \\
& \underline{x}^{\prime}=A \underline{x}
\end{aligned}
$$

The particular sol

$$
\begin{gathered}
\underline{x}_{p}(t)=v_{1}(t) \underline{x}_{1}(t)+ \\
v_{2}(t) \underline{x}_{2}(t)+\cdots \\
\cdots+v_{n}(t) \underline{x}_{n}(t) \\
\underline{x}_{p}(t)=\underbrace{[}_{\quad}[\begin{array}{ll}
{\left[\underline{x}_{1}(t)\right.} & \underline{x}_{2}(t) \cdots \underline{x}_{n}(t)
\end{array} \underbrace{]}_{\underline{v}}
\end{gathered}
$$

Derivation of formula :
Since we assume $\underline{x}_{p}(t)$ is a particular sol It satisfies $\underline{x}^{\prime}=A \underline{x}+\underline{f}$ Differentiating \underline{x}_{p}

$$
x^{\prime}(t) \underline{v}(t)+X(t) \underline{v}^{\prime}(t)
$$

substituting \underline{x}_{p} in RHS:

$$
A \underline{x}_{p}+\underline{f}=A(X \underline{V})+\underline{f}
$$

Equate LHS and RHS:

$$
\underbrace{x^{\prime}(t)=\sum^{\prime}(t)+x(t) v^{\prime(t)}}_{x_{-}^{\prime}}=\underbrace{A\left(x^{\prime}\right)+\underline{f}}_{A x_{p}+\mathfrak{f}}
$$

vising the fact: $X^{\prime}=A X$

$$
\begin{aligned}
\Rightarrow x(t) \underline{v}^{\prime}(t) & =f(t) \\
\Rightarrow \underline{v}(t) & =\int x^{-1}(t) \underline{f}(t) \\
& \text { using fact } x \text { is } \\
& \text { in vewtible } \\
& \text { (since def }(x) \neq 0 \\
& x \text { is invertible) }
\end{aligned}
$$

Having calculated $\underline{v}(t)$:

$$
\underline{X}_{p}(t)=X(t) \underline{v}(t)
$$ above.

Example
Solve the IV P

$$
\begin{array}{r}
\underline{x}^{\prime}=\left(\begin{array}{cc}
2 & -3 \\
1 & -2
\end{array}\right) \underline{x}+\underbrace{\binom{-1}{0}}_{\substack{e^{2 t} \\
1 \\
\hline}} \underset{\substack{\text { will helpus } \\
\text { seta mine } \\
\text { unknown } \\
\text { cueff }}}{\underline{f}(0)}
\end{array}
$$

General Solution to this DE
$\underline{x}(t)=C_{1} x_{1}(t)+C_{2} \underline{x}_{2}(t)$

(1) Calculate e-values of

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
2 & -3 \\
1 & -2
\end{array}\right) \\
& \operatorname{det}\left(\begin{array}{cc}
2-\lambda & -3 \\
1 & -2-\lambda
\end{array}\right)=0 \\
& \Rightarrow \lambda=-1,+1
\end{aligned}
$$

(2) Calculate e-vectors assoc. to each e-vnlue:

$$
\lambda_{1}=-1 \cdot \mid \sqrt{\lambda_{2}=1}
$$

Solve:	Solve:
$\left(\begin{array}{l}A-(-1) I\end{array}\right) \underline{u}=0$	$(A-(1) I) \underline{u}=0$
$\left(\begin{array}{ll}3 & -3 \\ 1 & -1\end{array}\right) \underline{u}=\underline{0}$	$\left(\begin{array}{ll}1 & -3 \\ 1 & -3\end{array}\right) \underline{u}=\underline{0}$
$\underline{\text { Solving }}$	
$\underline{u}=\binom{1}{1}^{*}$	$\underline{\text { Solving: }}$
$\underline{u}=\binom{3}{1}^{*}$	

Can now write down 2 sol ns to $\underline{x}^{\prime}=A \underline{x}$

$$
\begin{aligned}
& \underline{x}_{1}(t)=\binom{1}{1} e^{-1 t} \\
& \underline{x}_{2}(t)=\binom{3}{1} e^{1 t} \\
& x(t)=\left[\begin{array}{ll}
\underline{x}_{1}(t) & \underline{x}_{2}(t)
\end{array}\right] \\
& \hat{\uparrow} \\
& \text { fundamental }=\left[\begin{array}{ll}
e^{-t} & 3 e^{t} \\
e^{-t} & e^{t}
\end{array}\right] \\
& \text { matrix } \\
& \Rightarrow X^{-1}(t)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\operatorname{det} x}\left[\begin{array}{cc}
e^{t}-3 e^{t} \\
-e^{-t} & e^{-t}
\end{array}\right] \\
\operatorname{det}(x) & =1-(3)=-2 \\
\Rightarrow & x^{-1}(t)=\left(\begin{array}{cc}
-1 / 2 e^{t} & 3 / 2 t^{t} \\
1 / 2 e^{-t} & -1 / 2 e^{2}
\end{array}\right)
\end{aligned}
$$

(3) Use formulae to calculate $\underline{x}_{p}(t)$

$$
\begin{aligned}
& \underline{X}_{p}(t)=X(t) \underline{v}(t) \\
& \text { where } \underline{v}=\int X^{-1}(t) \underline{f} d t \\
& \int X^{-1}(t) \underline{f} d t \\
& =\int\binom{e_{2}+e^{2 t}}{1} d t \\
& =\int\binom{-\frac{1}{2} e^{3 t}+\frac{3}{2} e^{t}}{\frac{2}{2} t^{t}-\frac{1}{2} e^{-t}} d t
\end{aligned}
$$

calcalate ${\underset{X}{x}}_{p}$

$$
\begin{aligned}
\underline{X}_{p} & =x \underline{v} \\
& =\left[\begin{array}{cc}
e^{-t} & 3 e^{t} \\
e^{-t} & e^{t}
\end{array}\right]\binom{-\frac{1}{6} e^{3 t}+\frac{3}{2} e^{t}}{\frac{1}{2} e^{t}+\frac{1}{2} e^{-t}} \\
& =\left[\begin{array}{r}
-\frac{1}{6} e^{2 t}+\frac{3}{2}+\frac{3}{2} e^{2 t}+\frac{3}{2} \\
-\frac{1}{6} e^{2 t}+\frac{3}{2}+\frac{1}{2} e^{2 t}+\frac{1}{2}
\end{array}\right] \\
& =\left[3+\frac{4}{3} e^{2 t}\right]
\end{aligned}
$$

$$
\left[2+\frac{1}{3} e^{2 t}\right]
$$

General (Non-Hom) Solution:

$$
\begin{aligned}
\underline{x}(t) & =C_{1}\binom{1}{1} e^{-1 t} \\
& +C_{2}\binom{3}{1} e^{1 t} \\
& +\left[\begin{array}{l}
3+\frac{4}{3} e^{2 t} \\
2+\frac{1}{3} e^{2 t}
\end{array}\right]
\end{aligned}
$$

To calculate c_{1} and C_{2} we apply

$$
\underline{x}(0)=\binom{-1}{0}
$$

\uparrow

$$
\underline{x}(0)=c_{1}\binom{1}{1} e^{0}
$$

$$
\begin{aligned}
& +C_{2}\binom{3}{1} e^{0} \\
& +\left[\begin{array}{l}
3+\frac{4}{3} e^{0} \\
2+\frac{1}{3} e^{0}
\end{array}\right] \\
X(0)= & c_{1}\binom{1}{1}+c_{2}\binom{3}{1}+\binom{3+4 / 3}{2+1 / 3}
\end{aligned}
$$

Next rearrange:

$$
\begin{aligned}
& \underline{x}(0)-\binom{13 / 3}{7 / 3}=c_{1}\binom{1}{1}+c_{2}\binom{3}{1} \\
& (-1)-(13 / 3)=c_{1}\binom{1}{1}+c_{2}(3)
\end{aligned}
$$

$$
\left[\begin{array}{l}
-16 / 3 \\
-7 / 3
\end{array}\right]=c_{1}\binom{1}{1}+c_{2}\binom{3}{1}
$$

Solving for c_{1}, c_{2} :

$$
\begin{aligned}
& c_{1}=-3 / 2 \\
& c_{2}=-5 / 6
\end{aligned}
$$

$$
\begin{aligned}
& x(t)=\left(-\frac{1}{2}\right)(1) e^{-1 t} \\
&+\left(-\frac{5}{6}\right)(3)\binom{3}{1} e^{1 t} \\
&+\left[\begin{array}{l}
3+\frac{4}{3} e^{2 t} \\
2+\frac{1}{3} e^{2 t}
\end{array}\right] \\
&=\binom{-3 / 2 e^{-t}}{-3 / 2 e^{-t}}+\binom{-\frac{5}{2} e^{t}}{-\frac{5}{6} e^{t}} \\
&+\left[\begin{array}{l}
3+\frac{4}{3} e^{2 t} \\
2+\frac{1}{3} e^{2 t}
\end{array}\right]
\end{aligned}
$$

$$
\underline{x}(t)=\left[\begin{array}{l}
-3 / 2 e^{t} t-\frac{5}{2} e^{t}+4 \frac{4}{5} c^{2 t}+3 \\
-3 / 2 e^{t}-\frac{5}{6} t^{2}+\frac{1}{3} c^{2 t}+2
\end{array}\right]
$$

solution to IVP

