Lecture 8
Introduction to Differential Equations

Roman Kitsela

October 15, 2018
Chapter 2 (quick recap)

Chapter 4 - Linear second-order equations
 • Introduction (the mass-spring model)

Section 4.2 - Homogeneous linear equations
 • Introduction
 • Example
This lecture
• Auxiliary equation - reminder
This lecture

- Auxiliary equation - reminder
- Example recap (two distinct roots)
This lecture

- Auxiliary equation - reminder
- Example recap (two distinct roots)
- A little theory (linear independence and the general solution)
This lecture

- Auxiliary equation - reminder
- Example recap (two distinct roots)
- A little theory (linear independence and the general solution)
- The general solution for repeated root case and complex root case
This lecture

- Auxiliary equation - reminder
- Example recap (two distinct roots)
- A little theory (linear independence and the general solution)
- The general solution for repeated root case and complex root case
- Example
Quick Announcements + Questions

• First MATLAB assignment due Friday
• Homework 2 assigned on the website (also due Friday)
• Questions?
Quick Announcements + Questions

- First MATLAB assignment due Friday

Roman Kitsela
Lecture 8
October 15, 2018
Quick Announcements + Questions

• First MATLAB assignment **due Friday**

• Homework 2 assigned on the website (also **due Friday**)
Quick Announcements + Questions

- First MATLAB assignment **due Friday**
- Homework 2 assigned on the website (also **due Friday**)
- Questions?
Last lecture we began the study of second-order D.E.s by considering *homogeneous* equations with *constant coefficients*:

\[ay'' + by' + cy = 0 \] \hspace{1cm} (1)
The auxiliary equation

Last lecture we began the study of second-order D.E.s by considering **homogeneous** equations with **constant coefficients**:

\[ay'' + by' + cy = 0 \] \hspace{1cm} (1)

The associated **auxiliary** (or **characteristic**) equation is:
The auxiliary equation

Last lecture we began the study of second-order D.E.s by considering **homogeneous** equations with **constant coefficients**:

\[ay'' + by' + cy = 0 \] (1)

The associated **auxiliary** (or **characteristic**) equation is:

\[ar^2 + br + c = 0 \] (2)
The auxiliary equation

Last lecture we began the study of second-order D.E.s by considering **homogeneous** equations with **constant coefficients**:

\[ay'' + by' + cy = 0 \]

(1)

The associated **auxiliary** (or **characteristic**) equation is:

\[ar^2 + br + c = 0 \]

(2)

Shown last time:

\[y(t) = e^{\lambda t} \] is a solution to (1) **if and only if** \(r = \lambda \) is a solution to (2)
Example (from last lecture)

Example

Solve the differential equation

\[y''(t) - 5y'(t) + 6y(t) = 0 \] (3)

Solution.

Characteristic equation:

\[r^2 - 5r + 6 = 0 \]

\[\Rightarrow r = 2 \text{ or } r = 3 \]

Two solutions to (3):

\[y_1(t) = e^{2t} \text{ and } y_2(t) = e^{3t} \]

General solution:

\[y(t) = C_1 e^{2t} + C_2 e^{3t} \]

Why exactly is this the general solution?
Example (from last lecture)

Example
Solve the differential equation

\[y''(t) - 5y'(t) + 6y(t) = 0 \] \hspace{1cm} (3)

Solution.

Characteristic equation:

\[r^2 - 5r + 6 = 0 \]
\[\Rightarrow r = 2 \text{ or } r = 3 \]

Two solutions to (3):

\[y_1(t) = e^{2t} \] and \[y_2(t) = e^{3t} \]

General solution:

\[y(t) = C_1 e^{2t} + C_2 e^{3t} \]

Why exactly is this the general solution?
Example (from last lecture)

Example
Solve the differential equation

\[y''(t) - 5y'(t) + 6y(t) = 0 \] (3)

Solution.
Characteristic equation:
Example (from last lecture)

Example

Solve the differential equation

\[y''(t) - 5y'(t) + 6y(t) = 0 \] \hspace{1cm} (3)

Solution.

Characteristic equation:

\[r^2 - 5r + 6 = 0 \implies r = 2 \text{ or } r = 3 \]
Example (from last lecture)

Example

Solve the differential equation

\[y''(t) - 5y'(t) + 6y(t) = 0 \] (3)

Solution.

Characteristic equation:

\[r^2 - 5r + 6 = 0 \implies r = 2 \text{ or } r = 3 \]

Two solutions to (3):

\[y_1(t) = e^{2t} \text{ and } y_2(t) = e^{3t} \]
Example (from last lecture)

Example

Solve the differential equation

\[y''(t) - 5y'(t) + 6y(t) = 0 \] \hspace{1cm} (3)

Solution.

Characteristic equation:

\[r^2 - 5r + 6 = 0 \implies r = 2 \quad \text{or} \quad r = 3 \]

Two solutions to (3):

\[y_1(t) = e^{2t} \quad \text{and} \quad y_2(t) = e^{3t} \]
Example (from last lecture)

Example
Solve the differential equation

\[y''(t) - 5y'(t) + 6y(t) = 0 \] \hspace{1cm} (3)

Solution.

Characteristic equation:

\[r^2 - 5r + 6 = 0 \implies r = 2 \text{ or } r = 3 \]

Two solutions to (3):

\[y_1(t) = e^{2t} \quad \text{and} \quad y_2(t) = e^{3t} \]

General solution:
Example (from last lecture)

Example

Solve the differential equation

\[y''(t) - 5y'(t) + 6y(t) = 0 \]

(3)

Solution.

Characteristic equation:

\[r^2 - 5r + 6 = 0 \implies r = 2 \quad \text{or} \quad r = 3 \]

Two solutions to (3):

\[y_1(t) = e^{2t} \quad \text{and} \quad y_2(t) = e^{3t} \]

General solution:

\[y(t) = C_1 e^{2t} + C_2 e^{3t} \]
Example (from last lecture)

Example

Solve the differential equation

\[y''(t) - 5y'(t) + 6y(t) = 0 \] \hspace{1cm} (3)

Solution.

Characteristic equation:

\[r^2 - 5r + 6 = 0 \implies r = 2 \quad \text{or} \quad r = 3 \]

Two solutions to (3):

\[y_1(t) = e^{2t} \quad \text{and} \quad y_2(t) = e^{3t} \]

General solution:

\[y(t) = C_1 e^{2t} + C_2 e^{3t} \]

Why exactly is this the general solution?
Theorem (Theorem 2 - page 160)

If $y_1(t)$ and $y_2(t)$ are any two linearly independent solutions to the D.E.

$$ay'' + by' + cy = 0$$

on $(-\infty, \infty)$, then
Theorem (Theorem 2 - page 160)

If \(y_1(t) \) and \(y_2(t) \) are any two \textbf{linearly independent} solutions to the D.E.

\[
ay'' + by' + cy = 0
\]
on \((-\infty, \infty)\), then there exists unique constants \(C_1 \) and \(C_2 \) such that
Theorem (Theorem 2 - page 160)

If \(y_1(t) \) and \(y_2(t) \) are any two \textit{linearly independent} solutions to the D.E.

\[
ay'' + by' + cy = 0
\]

on \((-\infty, \infty)\), then there exists unique constants \(C_1 \) and \(C_2 \) such that

\[
y(t) = C_1y_1 + C_2y_2
\]
Theorem (Theorem 2 - page 160)

If \(y_1(t)\) and \(y_2(t)\) are any two \textbf{linearly independent} solutions to the D.E.

\[
ay'' + by' + cy = 0
\]

on \((-\infty, \infty)\), then there exists unique constants \(C_1\) and \(C_2\) such that

\[
y(t) = C_1y_1 + C_2y_2
\]

satisfies the initial value problem
Theorem (Theorem 2 - page 160)

If $y_1(t)$ and $y_2(t)$ are any two **linearly independent** solutions to the D.E.

$$ay'' + by' + cy = 0$$

on $(-\infty, \infty)$, **then there exists unique constants** C_1 and C_2 **such that**

$$y(t) = C_1y_1 + C_2y_2$$

satisfies the initial value problem

$$ay'' + by' + cy = 0; \quad y(t_0) = Y_0, \quad y'(t_0) = Y_1$$

on $(-\infty, \infty)$
Theorem

If $y_1(t)$ and $y_2(t)$ are any two essentially different solutions to the D.E. then we can always find unique constants C_1 and C_2 such that $y(t) = C_1 y_1(t) + C_2 y_2(t)$ solves the original equation and satisfies any given initial conditions $y(t_0) = Y_0$, $y'(t_0) = Y_1$.
Theorem

If $y_1(t)$ and $y_2(t)$ are any two essentially different solutions to the D.E.

$$ay'' + by' + cy = 0$$

Then
Theorem

If $y_1(t)$ and $y_2(t)$ are any two essentially different solutions to the D.E.

$$ay'' + by' + cy = 0$$

Then we can always find unique constants C_1 and C_2 such that
Theorem

If $y_1(t)$ and $y_2(t)$ are any two essentially different solutions to the D.E.

$$ay'' + by' + cy = 0$$

Then we can always find unique constants C_1 and C_2 such that

$$y(t) = C_1y_1 + C_2y_2$$
Theorem

If \(y_1(t) \) and \(y_2(t) \) are any two essentially different solutions to the D.E.

\[ay'' + by' + cy = 0 \]

Then we can always find unique constants \(C_1 \) and \(C_2 \) such that

\[y(t) = C_1y_1 + C_2y_2 \]

solves the original equation and
Theorem

If $y_1(t)$ and $y_2(t)$ are any two essentially different solutions to the D.E.

$$ay'' + by' + cy = 0$$

Then we can always find unique constants C_1 and C_2 such that

$$y(t) = C_1y_1 + C_2y_2$$

solves the original equation and satisfies any given initial conditions $y(t_0) = Y_0, y'(t_0) = Y_1$
A pair of functions $y_1(t)$ and $y_2(t)$ is said to be **linearly independent on the interval I** if and only if neither of them is a constant multiple of the other on all of I.

Quick Examples:

- $y_1(t) = e^{2t}$ and $y_2(t) = 4e^{2t}$ are linearly dependent (on $(-\infty, \infty)$).
- $y_1(t) = e^{2t}$ and $y_2(t) = e^{3t}$ are linearly independent (on $(-\infty, \infty)$).
- $y_1(t) = t^2$ and $y_2(t) = -2t^2$ are linearly dependent (on $(-\infty, \infty)$).
- $y_1(t) = t^2$ and $y_2(t) = t^3$ are linearly independent (on $(-\infty, \infty)$).
Definition (Linear Independence of functions)

A pair of functions $y_1(t)$ and $y_2(t)$ is said to be linearly independent on the interval I if and only if neither of them is a constant multiple of the other on all of I. Otherwise we say that $y_1(t)$ and $y_2(t)$ are linearly dependent.
Linear Independence

Definition (Linear Independence of functions)

A pair of functions \(y_1(t) \) and \(y_2(t) \) is said to be **linearly independent on the interval** \(I \) if and only if neither of them is a constant multiple of the other on all of \(I \).

Otherwise we say that \(y_1(t) \) and \(y_2(t) \) are **linearly dependent**.

Quick Examples:
- \(y_1(t) = e^{2t} \) and \(y_2(t) = 4e^{2t} \) are linearly dependent.
- \(y_1(t) = e^{2t} \) and \(y_2(t) = e^{3t} \) are linearly independent.
- \(y_1(t) = t^2 \) and \(y_2(t) = -2t^2 \) are linearly dependent.
- \(y_1(t) = t^2 \) and \(y_2(t) = t^3 \) are linearly independent.
Linear Independence

Definition (Linear Independence of functions)
A pair of functions $y_1(t)$ and $y_2(t)$ is said to be **linearly independent on the interval** I if and only if neither of them is a constant multiple of the other on all of I. Otherwise we say that $y_1(t)$ and $y_2(t)$ are **linearly dependent**.

Quick Examples:
- $y_1(t) = e^{2t}$ and $y_2(t) = 4e^{2t}$ are linearly **dependent** (on $(-\infty, \infty)$)
Definition (Linear Independence of functions)

A pair of functions $y_1(t)$ and $y_2(t)$ is said to be linearly independent on the interval I if and only if neither of them is a constant multiple of the other on all of I.

Otherwise we say that $y_1(t)$ and $y_2(t)$ are linearly dependent.

Quick Examples:

- $y_1(t) = e^{2t}$ and $y_2(t) = 4e^{2t}$ are linearly dependent (on $(-\infty, \infty)$)
- $y_1(t) = e^{2t}$ and $y_2(t) = e^{3t}$ are
Definition (Linear Independence of functions)

A pair of functions \(y_1(t) \) and \(y_2(t) \) is said to be linearly independent on the interval \(I \) if and only if neither of them is a constant multiple of the other on all of \(I \).
Otherwise we say that \(y_1(t) \) and \(y_2(t) \) are linearly dependent.

Quick Examples:

- \(y_1(t) = e^{2t} \) and \(y_2(t) = 4e^{2t} \) are linearly dependent (on \((-\infty, \infty) \))
- \(y_1(t) = e^{2t} \) and \(y_2(t) = e^{3t} \) are linearly independent (on \((-\infty, \infty) \))
Linear Independence

Definition (Linear Independence of functions)
A pair of functions \(y_1(t) \) and \(y_2(t) \) is said to be \textbf{linearly independent on the interval} \(I \) if and only if neither of them is a constant multiple of the other on all of \(I \)
Otherwise we say that \(y_1(t) \) and \(y_2(t) \) are \textbf{linearly dependent}.

Quick Examples:
- \(y_1(t) = e^{2t} \) and \(y_2(t) = 4e^{2t} \) are linearly \textbf{dependent} (on \((−\infty, \infty))\)
- \(y_1(t) = e^{2t} \) and \(y_2(t) = e^{3t} \) are linearly \textbf{independent} (on \((−\infty, \infty))\)
- \(y_1(t) = t^2 \) and \(y_2(t) = −2t^2 \) are
Definition (Linear Independence of functions)

A pair of functions $y_1(t)$ and $y_2(t)$ is said to be **linearly independent on the interval I** if and only if neither of them is a constant multiple of the other on all of I

Otherwise we say that $y_1(t)$ and $y_2(t)$ are **linearly dependent**.

Quick Examples:

- $y_1(t) = e^{2t}$ and $y_2(t) = 4e^{2t}$ are linearly dependent (on $(-\infty, \infty)$)
- $y_1(t) = e^{2t}$ and $y_2(t) = e^{3t}$ are linearly independent (on $(-\infty, \infty)$)
- $y_1(t) = t^2$ and $y_2(t) = -2t^2$ are linearly dependent (on $(-\infty, \infty)$)
Definition (Linear Independence of functions)

A pair of functions $y_1(t)$ and $y_2(t)$ is said to be **linearly independent on the interval I** if and only if neither of them is a constant multiple of the other on all of I.

Otherwise we say that $y_1(t)$ and $y_2(t)$ are **linearly dependent**.

Quick Examples:

- $y_1(t) = e^{2t}$ and $y_2(t) = 4e^{2t}$ are linearly **dependent** (on $(-\infty, \infty)$).
- $y_1(t) = e^{2t}$ and $y_2(t) = e^{3t}$ are linearly **independent** (on $(-\infty, \infty)$).
- $y_1(t) = t^2$ and $y_2(t) = -2t^2$ are linearly **dependent** (on $(-\infty, \infty)$).
- $y_1(t) = t^2$ and $y_2(t) = t^3$ are linearly **independent** (on $(-\infty, \infty)$).
Upshot of the theory

To solve second-order differential equations we need to find two "different" solutions y_1 and y_2 (different = linearly independent).

The general solution to a differential equation (without initial conditions) will then be given by a linear combination of y_1 and y_2:

$$y = C_1 y_1 + C_2 y_2$$

If we are given initial conditions (we need 2 for second-order problems!) we can always calculate C_1 and C_2 so that $y = C_1 y_1 + C_2 y_2$ will match those initial conditions.
To solve second-order differential equations we need to find two "different" solutions y_1 and y_2 (different $=$ linearly independent).
To solve second-order differential equations we need to find two "different" solutions y_1 and y_2 (different \Rightarrow linearly independent).

The general solution to a differential equation (without initial conditions) will then be given by a linear combination of y_1 and y_2:

$$y = C_1 y_1 + C_2 y_2$$
1. To solve second-order differential equations we need to find two "different" solutions y_1 and y_2 (different = linearly independent).

2. The general solution to a differential equation (without initial conditions) will then be given by a linear combination of y_1 and y_2:

$$y = C_1 y_1 + C_2 y_2$$

3. If we are given initial conditions (we need 2 for second-order problems!) we can always calculate C_1 and C_2 so that $y = C_1 y_1 + C_2 y_2$ will match those initial conditions.
We have seen that calculating solutions to $ay'' + by' + cy = 0$ amounts to solving the quadratic equation $ar^2 + br + c = 0$. There are three possible cases:

1. **Case 1** Two distinct roots r_1, r_2
2. **Case 2** One repeated root r
3. **Case 3** Two complex roots $\alpha + i\beta$, $\alpha - i\beta$

We have already seen that in **Case 1** $y_1 = e^{r_1 t}$ and $y_2 = e^{r_2 t}$ are linearly independent solutions, and so the general solution has the form:

$$y = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$
We have seen that calculating solutions to \(ay'' + by' + cy = 0 \) amounts to solving the quadratic equation \(ar^2 + br + c = 0 \), there are three possible cases:

- (Case 1) Two distinct roots \(r_1, r_2 \)
- (Case 2) One repeated root \(r \)
- (Case 3) Two complex roots \(\alpha + i\beta, \alpha - i\beta \)

We have already seen that in Case 1 \(y_1 = e^{r_1t} \) and \(y_2 = e^{r_2t} \) are linearly independent solutions and so the general solution has the form:

\[
y = C_1 e^{r_1t} + C_2 e^{r_2t}
\]
Back to the auxiliary equation

We have seen that calculating solutions to $a y'' + b y' + c y = 0$ amounts to solving the quadratic equation $ar^2 + br + c = 0$, there are three possible cases:

(Case 1) Two distinct roots r_1, r_2
We have seen that calculating solutions to \(ay'' + by' + cy = 0 \) amounts to solving the quadratic equation \(ar^2 + br + c = 0 \), there are three possible cases:

(Case 1) Two distinct roots \(r_1, r_2 \)

(Case 2) One repeated root \(r \)
We have seen that calculating solutions to $ay'' + by' + cy = 0$ amounts to solving the quadratic equation $ar^2 + br + c = 0$, there are three possible cases:

(Case 1) Two distinct roots r_1, r_2
(Case 2) One repeated root r
(Case 3) Two complex roots $\alpha + i\beta, \alpha - i\beta$
Back to the auxiliary equation

We have seen that calculating solutions to $ay'' + by' + cy = 0$ amounts to solving the quadratic equation $ar^2 + br + c = 0$, there are three possible cases:

(Case 1) Two distinct roots r_1, r_2
(Case 2) One repeated root r
(Case 3) Two complex roots $\alpha + i\beta, \alpha - i\beta$

We have already seen that in Case 1 $y_1 = e^{r_1t}$ and $y_2 = e^{r_2t}$ are linearly independent solutions and so the general solution has the form:
We have seen that calculating solutions to \(ay'' + by' + cy = 0 \) amounts to solving the quadratic equation \(ar^2 + br + c = 0 \), there are three possible cases:

(Case 1) Two distinct roots \(r_1, r_2 \)
(Case 2) One repeated root \(r \)
(Case 3) Two complex roots \(\alpha + i\beta, \alpha - i\beta \)

We have already seen that in Case 1 \(y_1 = e^{r_1t} \) and \(y_2 = e^{r_2t} \) are linearly independent solutions and so the general solution has the form:

\[
y = C_1 e^{r_1t} + C_2 e^{r_2t}
\]
Blackboard plan

1. Derive a general solution in Case 2
2. Derive a general solution in Case 3

Examples
1. Derive a general solution in Case 2
1. Derive a general solution in Case 2
2. Derive a general solution in Case 3
Derive a general solution in Case 2

Derive a general solution in Case 3

Examples