$$
\text { Math 20D - Fall } 2008 \text { - Midterm I }
$$

Name: \qquad

Student ID: \qquad

Section time: \qquad

Instructions:

Please print your name, student ID and section time.
During the test, you may not use books, calculators or telephones. You may use a "cheat sheet" of notes which should be at most half a page, front and back.

Read each question carefully, and show all your work. Answers with no explanation will receive no credit, even if they are correct.

There are 6 questions which are worth 60 points. You have 50 minutes to complete the test.

Question	Score	Maximum
1		12
2		10
3		10
4		10
5		6
6		60
Total		

Problem 1. [12 points.]
Consider the linear first order equation

$$
t^{2} y^{\prime}+3 t y=2 e^{t^{2}}
$$

(i) [4 points.] Compute an integrating factor for the differential equation.
(ii) [4 points.] Find the general solution.
(iii) [4 points.] Find the solution which satisfies the initial condition $y(1)=0$. What is the maximal interval where the solution is defined?

Problem 2. [10 points.]
A tank originally contains 10 gallons of fresh water. Water containing 3 lb of salt per gallon is poured into the tank at a rate of $2 \mathrm{gal} / \mathrm{min}$. The mixture is allowed to leave the tank at the same rate.
(i) [5 points.] Write down the differential equation for the amount $Q(t)$ of salt in the tank at time t.
(ii) [5 points.] Find the amount of salt in the tank after 10 minutes.

Problem 3. [10 points.]
Consider the differential equation

$$
\left(3 x^{2}+y^{2}\right)+(2 x y+1) y^{\prime}=0 .
$$

(i) [4 points.] Explain why the differential equation is exact.
(ii) [6 points.] Solve the differential equation. It suffices to give the solution implicitly.

Problem 4. [10 points.]
Consider the autonomous equation

$$
\frac{d y}{d t}=4 y-y^{2} .
$$

(i) [7 points.] Determine the critical points and indicate their type i.e. asymptotically stable, unstable, semistable. Sketch the phase line.
(ii) [3 points.] What is the long-term behavior of the solution satisfying the initial value $y(0)=$ 2 ?

Problem 5. [10 points.]
Find the general solution of the differential equation $y^{\prime \prime}+4 y^{\prime}+13 y=0$.

Problem 6. [8 points.]
Consider the differential equation

$$
y^{\prime \prime}+2 t y^{\prime}+q(t) y=0,
$$

for some unknown function $q(t)$.
Two solutions y_{1} and y_{2} of the differential equation satisfy the initial conditions

$$
\begin{gathered}
y_{1}(0)=1, \quad y_{2}(0)=2 \\
y_{1}^{\prime}(0)=-1, \quad y_{2}^{\prime}(0)=3 .
\end{gathered}
$$

(i) [4 points] Determine the Wronskian $W\left(y_{1}, y_{2}\right)$ as a function of t. Do y_{1} and y_{2} form a fundamental pair of solutions?
(ii) [4 points] A third solution satisfies the initial value problem

$$
y(0)=1, y^{\prime}(0)=7 .
$$

Express this solution in terms of y_{1} and y_{2}.

