Math 20D - Fall 2011 - Midterm I

Name: \qquad

Student ID: \qquad

Section time: \qquad

Instructions:

Please print your name, student ID and section time.
During the test, you may not use books, calculators or telephones. You may use a "cheat sheet" of notes which should be at most half a page, front and back.

Read each question carefully, and show all your work. Answers with no explanation will receive no credit, even if they are correct.

There are 6 questions which are worth 60 points. You have 50 minutes to complete the test.

Question	Score	Maximum
1		10
2		10
3		10
4		10
5		10
6		60
Total		

Problem 1. [10 points; 4, 6.]
Consider the differential equation

$$
\left(4 x^{3} y^{3}+a y^{2}\right)+\left(3 x^{4} y^{2}+2 x y+2\right) y^{\prime}=0
$$

where a is a constant.
(i) Show that the differential equation is exact if and only if $a=1$.
(ii) Solve the differential equation, when exact. It suffices to give the solution implicitly.

Problem 2. [10 points.]
A colony $y(t)$ is growing in a bakery according to the differential equation

$$
\frac{d y}{d t}=y^{2}-5 y+6 .
$$

Determine the critical points and indicate their type i.e. asymptotically stable, unstable, semistable. Sketch the phase line. What is the long-term behavior of the solution satisfying the initial value $y(0)=1$?

Problem 3. [10 points.]
Find the general solution of the first order equation

$$
t^{3} y^{\prime}+4 t^{2} y=2 \sin t
$$

Problem 4. [10 points; 5, 5.]
(i) Write down a second order constant coefficient homogeneous differential equation admitting the solution

$$
y=e^{3 t}(\cos t+4 \sin t)
$$

(ii) For the same differential equation, solve the initial value problem

$$
y(0)=1, y^{\prime}(0)=2 .
$$

You do not need to answer part (i) in order to solve part (ii).

Problem 5. [10 points; 7, 3.]
Consider the differential equation

$$
t^{2} y^{\prime \prime}-3 t y^{\prime}+3 y=0, \text { for } t>0 .
$$

(i) Check that $y_{1}=t$ and $y_{2}=t^{3}$ form a fundamental pair of solutions.
(ii) Write down the general solution to the differential equation.

Problem 6. [10 points.]
A swimming pool originally contains 100 gallons of fresh water. Water containing 5 lb of dye per gallon is poured into the pool at a rate of $r \mathrm{gal} / \mathrm{min}$. The mixture is allowed to leave the pool at the same rate. After 100 minutes, dye in the pool is measured, and found to be exactly 50 lb . What is the rate water was poured into the pool?

