Math 20D - Fall 2011 - Midterm II

Name: _____

Student ID: _____

Instructions:

Please print your name, student ID and section time.

During the test, you may not use books, calculators or telephones. You may use a "cheat sheet" of notes which should be at most half a page, front and back.

Read each question carefully, and show all your work. Answers with no explanation will receive no credit, even if they are correct.

There are 4 questions which are worth 45 points. You have 50 minutes to complete the test.

Question	Score	Maximum
1		10
2		8
3		11
4		16
Total		45

Problem 1. [10 points; 5, 5.] The matrix $A = \begin{bmatrix} 3 & 1 \\ -1 & 5 \end{bmatrix}$ has a repeated eigenvalue $\lambda = 4$ and an eigenvector $\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. (You do not need to check this fact.)

(i) Find a fundamental pair of solutions for the system $\vec{x}' = A\vec{x}$.

(ii) Calculate the matrix exponential e^{At} .

Problem 2. [8 points.]

Using undetermined coefficients, find a particular solution to the differential equation:

 $y'' - 2y' - 3y = 3 - 10\sin t.$

Problem 3. [11 points.]

Using variation of parameters, find a particular solution to the differential equation:

$$y'' - 2y' + 2y = e^t \sin t \cos t.$$

Please write the solution in simplest form.

Problem 4. [16 points; 6, 4, 6.]

Consider the system

$$\vec{x'} = \left[\begin{array}{rr} 1 & 1 \\ 4 & -2 \end{array} \right] \vec{x}.$$

(i) Write down the general solution.

(ii) Sketch the trajectories of the solutions and indicate their type.

(iii) Using variation of parameters, find a particular solution to the inhomogeneous system

$$\vec{x}' = \begin{bmatrix} 1 & 1 \\ 4 & -2 \end{bmatrix} \vec{x} + \begin{bmatrix} 5e^t \\ 0 \end{bmatrix}$$