PID: \qquad

Instructions

1. Write your Name and PID on the front of your Blue Book.
2. No calculators or other electronic devices are allowed during this exam.
3. You may use a double sided page of notes.
4. Write your solutions clearly in your Blue Book.
(a) Carefully indicate the number and letter of each question and question part.
(b) Present your answers in the same order as they appear in the exam.
(c) Start each numbered problem on a new side of a page.
5. Show all of your work and justify all your claims. No credit will be given for unsupported answers, even if correct.

Complete 5 out of the 6 questions

1. (10 points) (a) Solve the initial value problem

$$
y^{\prime}-y=e^{-t}, \quad y(0)=y_{0}
$$

(b) Explain how the behaviour of the solution $y(t)$ as $t \longrightarrow \infty$ depends on the value of the initial value y_{0}.

Hint: There are 3 different cases depending on y_{0}.
2. (10 points) Find the general solution to the following differential equations
(a)

$$
\frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+9 y=0
$$

(b)

$$
4 \frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}-3 y=0
$$

(c)

$$
\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t}+5 y=0
$$

3. (10 points) (a) Find the explicit solution to the initial value problem

$$
e^{t}-y y^{\prime}=0, \quad y(0)=1
$$

(b) For which values of t is this solution valid?
4. (10 points) Find the general solution to the differential equation

$$
\frac{d y}{d x}=\frac{x-y-1}{x+y+5}
$$

5. (10 points) Consider the following nonhomogeneous equation

$$
\frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}-2 y=f(t)
$$

Determine the form of a particular solution in the following cases (you do not have to calculate any unknown coefficients)
(a) $f(t)=t^{2}-1$
(b) $f(t)=e^{2 t}$
(c) $f(t)=\cos (2 t)$
(d) $f(t)=t e^{t}$
6. (10 points) Solve the initial value problem

$$
4 \frac{d^{2} x}{d t^{2}}-4 \frac{d x}{d t}+x=0 ; \quad x(0)=2, \quad x^{\prime}(0)=2
$$

