
Problem 1.

A colony y(t) of yeast is growing in a bakery according to the differential equation

dy

dt
= y2(y2 − 9), y(0) = y0 > 0.

(i) Find the critical solutions, indicate their type, draw the phase line and sketch the graphs of some
solutions.

(ii) For what initial values y0 > 0 will the yeast colony eventually die out?

Solution:

(i) This is an autonomous differential equation. The critical points are found by setting

f(y) = y2(y2 − 9) = 0 =⇒ y = 0 or y = ±3.

We determine the sign of
f(y) = y2(y2 − 9)

as follows:
y < −3 =⇒ y2(y2 − 9) > 0

−3 < y < 0 or 0 < y < 3 =⇒ y2(y2 − 9) < 0

y > 3 =⇒ y2(y2 − 9) > 0.

Thus −3 is an asymptotically stable critical point, 0 is semistable, while 3 is unstable critical point.
(ii) We need

lim
t→∞

y(t) = 0.

If 0 < y0 < 3, solutions will converge to the critical point 0 (while for y0 ≥ 3 solutions will diverge
to infinity).
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Problem 2.

Solve the initial value problem: y′ = 1 + 2xy, y(0) = 1. (Your answer will require a definite integral.)

Solution: We use integrating factors. We have

y′ − 2xy = 1,

and the integrating factor is

u = exp
∫
−2x dx = e−x

2

.

We multiply both sides by the integrating factor u to find

(e−x
2

y)′ = e−x
2

.

Integrating we find

e−x
2

y =

∫ x

0

e−t
2

dt+ C =⇒ y = ex
2

∫ x

0

e−t
2

dt+ Cex
2

.

Using the initial condition
y(0) = 1 =⇒ C = 1.

Hence

y = ex
2

∫ x

0

e−t
2

dt+ ex
2

.



Problem 3.

Using undetermined coefficients, find the general solution of the differential equation

y′′ − 2y′ + 2y = 5 sin t.

Solution: We solve the homogeneous equation

y′′ − 2y′ + 2y = 0

by solving the characteristic equation

r2 − 2r + 2 = 0 =⇒ r = 1± i.
We find

y1 = et cos t, y2 = et sin t.

Next, we look for a particular solution in the form

y = A cos t+B sin t.

We calculate
y′ = B cos t−A sin t

y′′ = −A cos t−B sin t.

Hence
y′′ − 2y′ + 2y = (A− 2B) cos t+ (B + 2A) sin t = 5 sin t.

Then
A = 2B, B + 2A = 5 =⇒ A = 2, B = 1.

Thus
yp = 2 cos t+ sin t.

We find the general solution
y = 2 cos t+ sin t+ C1e

t cos t+ C2e
t sin t.



Problem 4.

Consider the differential equation

t2y′′ − 3ty′ + 3y = 0, for t > 0.

(i) Find the values of r such that y = tr is a solution to the differential equation.
(ii) Check that y1 = t and y2 = t3 form a fundamental pair of solutions.
(iii) Find the general solution of the differential equation

t2y′′ − 3ty′ + 3y = t3 ln t.

Solution:

(i) We have

y = tr =⇒ y′ = rtr−1, y′′ = r(r − 1)tr−2.

Substituting we find

t2y′′ − 3ty′ + 3y = t2 · r(r − 1)tr−2 − 3t · rtr−1 + 3tr = (r2 − 4r + 3)tr = 0

=⇒ r2 − 4r + 3 = 0 =⇒ r = 1, r = 3.

(ii) We calculate

W (y1, y2) =

∣∣∣∣ t t3

1 3t2

∣∣∣∣ = 2t3 6= 0

hence y1, y2 form a fundamental pair of solutions for t > 0.
(iii) The homogeneous solution is

yh = C1t+ C2t
3.

We use variation of parameters to find the particular solution. We first write the equation in standard
form

y′′ − 3

t
y′ +

3

t2
y = t ln t.

Using integration by parts we find

u1 = −
∫
t ln t · t3

2t3
dt = −1

2

∫
t ln t dt

= −1

2

(
1

2
t2 ln t−

∫
1

2
t2 d ln t

)
= −1

4
t2 ln t+

1

4

∫
t2 · 1

t
dt = −1

4
t2 ln t+

1

4
· t

2

2
.

Next,

u2 =

∫
t ln t · t

2t3
dt =

∫
ln t

2t
dt =

1

4
(ln t)2.

We conclude

yp = u1y1 + u2y2 =

(
−1

4
t2 ln t+

1

4
· t

2

2

)
· t+

1

4
(ln t)2 · t3 = −1

4
t3 ln t+

t3

8
+

(ln t)2 · t3

4
.

Therefore

y = yh + yp = C1t+ C2t
3 − 1

4
t3 ln t+

t3

8
+

(ln t)2 · t3

4
.

Rearranging constants, this can be rewritten as

y = c1t+ c2t
3 − 1

4
t3 ln t+

t3(ln t)2

4
,

for c1 = C1 and c2 = C2 − 1
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Problem 5.

Using the Laplace transform, solve the initial value problem

y′′ − 2y′ + y = t10et, y(0) = 1, y′(0) = 1.

Solution: Write Y (s) for the Laplace transform of the solution y. We Laplace transform

y′′ − 2y′ + y = t10et

into

s2Y (s)− s− 1− 2(sY (s)− 1) + Y (s) =
10!

(s− 1)11
.

Rearranging terms, we obtain

(s− 1)2Y (s)− (s− 1) =
10!

(s− 1)11
=⇒ Y (s)− 1

s− 1
=

10!

(s− 1)13
,

after dividing by (s− 1)2. We now use the inverse Laplace transform to find

y(t)− et =
1

12 · 11
· t12et =⇒ y(t) = et +

t12et

132
.



Problem 6.

The general solution of a certain first order system of differential equations x′ = Ax is

x = C1e
t

[
1
2

]
+ C2e

at

[
−2
1

]
,

where a is a non-zero real number.

(i) For what values of a is the origin a (proper) node? Will it be a source or a sink?
(ii) For what values of a is the origin a saddle equilibrium point? Carefully, draw the trajectories in this

case.
(iii) For a = 2, find the matrix exponential eAt.

Solution:

(i) A proper node corresponds to real distinct eigenvalues of the same sign. The eigenvalues are 1 and
a. Thus we need a > 0 and a 6= 1. The origin will be a source.

(ii) A saddle corresponds to eigenvalues of opposite signs. Thus we need a < 0.
(iii) We have

Ψ(t) =

[
et −2e2t

2et e2t

]
.

Thus

Ψ(0) =

[
1 −2
2 1

]
=⇒ Ψ(0)−1 =

1

5

[
1 2
−2 1

]
.

We calculate

eAt = Ψ(t) ·Ψ(0)−1 =
1

5

[
et −2e2t

2et e2t

]
·
[

1 2
−2 1

]
=

1

5

[
et + 4e2t 2et − 2e2t

2et − 2e2t 4et + e2t

]
.



Problem 7.

Find the general real-valued solution of the system

x′ =

[
1 1
−2 3

]
x.

Solution: We first find the eigenvalues and eigenvectors. We have

A− λI =

[
1− λ 1
−2 3− λ

]
whose determinant equals

(1− λ)(3− λ) + 2 = 0 =⇒ λ2 − 4λ+ 5 = 0 =⇒ λ = 2± i.
We use only one of the eigenvalues, say λ = 2 + i. We find the eigenvector

(A− (2 + i)I)~v = 0 =⇒
[
−1 + i 1
−2 1− i

]
~v = 0 =⇒ ~v =

[
1− i

2

]
.

We calculate the complex valued solution

~xc = e(2+i)t ·
[

1− i
2

]
= e2t(cos t+ i sin t) ·

[
1− i

2

]
= e2t

[
cos t+ sin t+ i(sin t− cos t)

2 cos t+ 2i sin t

]
.

Taking the real and imaginary parts, we find

~x1 = e2t
[

cos t+ sin t
2 cos t

]
, ~x2 = e2t

[
sin t− cos t

2 sin t

]
.

Then

x = c1~x1 + c2~x2 = c1e
2t

[
cos t+ sin t

2 cos t

]
+ c2e

2t

[
sin t− cos t

2 sin t

]
.

This is not the only possible form of the answer.



Problem 8.

Consider the differential equation

y′′ + 2xy′ + 2y = 0

whose solutions are power series in x centered at x0 = 0.

(i) Find the recurrence relation between the coefficients of the power series y.
(ii) Write down the first three non-zero terms in each of the two linearly independent solutions.
(iii) What is the radius of convergence of the solutions which contains only even powers of x?

Solution:

(i) We write

y =

∞∑
n=0

anx
n.

We calculate

y′ =

∞∑
n=1

nanx
n−1 =⇒ 2xy′ =

∞∑
n=0

2nanx
n,

y′′ =

∞∑
n=2

n(n− 1)anx
n−2 =

∞∑
n=0

(n+ 1)(n+ 2)an+2x
n

by shifting n→ n+ 2 in the last sum. We compute

y′′ + 2xy′ + 2y =

∞∑
n=0

[(n+ 1)(n+ 2)an+2 + 2nan + 2an]xn = 0.

Therefore

(n+ 1)(n+ 2)an+2 + 2nan + 2an = 0 =⇒ (n+ 1)(n+ 2)an+2 + 2(n+ 1)an = 0

=⇒ (n+ 2)an+2 + 2an = 0.

(ii) For n = 0, we obtain

2a2 + 2a0 = 0 =⇒ a2 = −a0.
For n = 2, we have

4a4 + 2a2 = 0 =⇒ a4 = −a2
2

=
a0
2
.

Similarly, for n = 1, we have

3a3 + 2a1 = 0 =⇒ a3 = −2

3
a1.

For n = 3, we have

5a5 + 2a3 = 0 =⇒ a5 = −2

5
a3 =

4

15
a1.

Clearly, a0 determines all the even power coefficients, and a1 determines the odd power coefficients.
Then the general solution can be written in the form

y = a0

(
1− x2 +

x4

2
+ . . .

)
+ a1

(
x− 2

3
x3 +

4

15
x5 + . . .

)
.

The two linearly independent solutions are

y1 = 1− x2 +
x4

2
+ . . .



and

y2 = x− 2

3
x3 +

4

15
x5 + . . . .

(iii) For the even power solution

y1 =
∑
k

a2kx
2k

we use the ratio test. We calculate

ρ = lim
k→∞

∣∣∣∣a2k+2x
2k+2

a2kx2k

∣∣∣∣ = lim
k→∞

∣∣∣∣ −2

2k + 2
x2
∣∣∣∣ = 0 < 1.

To simplify the fraction we used the recurrence found in (i):

(2k + 2)a2k+2 + 2a2k = 0 =⇒ a2k+2

a2k
= − 2

2k + 2
.

Thus by the ratio test, we always have convergence or equivalently, the radius of convergence is
infinite.



Problem 9.

(i) Find the inverse Laplace transform of the function

1

(s+ 1)(s2 + 4s+ 5)
.

(ii) Using the Laplace transform, solve the initial value problem

y′′ + 4y′ + 5y = e−t + e−t+πuπ(t), y(0) = 0, y′(0) = 0.

Solution:

(i) We use partial fractions to write

1

(s+ 1)(s2 + 4s+ 5)
=

A

s+ 1
+
B(s+ 2) + C

s2 + 4s+ 5
.

We solve
A(s2 + 4s+ 5) +B(s+ 1)(s+ 2) + C(s+ 1) = 1.

From here

A =
1

2
, B = −1

2
, C = −1

2
.

Thus the fraction becomes

1

(s+ 1)(s2 + 4s+ 5)
=

1

2

1

s+ 1
− 1

2
· (s+ 2)

(s+ 2)2 + 1
− 1

2
· 1

(s+ 2)2 + 1
.

The inverse Laplace transform is

1

2
e−t − 1

2
e−2t cos t− 1

2
e−2t sin t.

(ii) We Laplace transform the differential equation

y′′ + 4y′ + 5y = e−t + e−t+πuπ(t)

into

s2Y (s) + 4Y (s) + 5Y (s) =
1

s+ 1
+
e−sπ

s+ 1
=⇒ Y (s) =

1

(s+ 1)(s2 + 4s+ 5)
+

e−s+π

(s+ 1)(s2 + 4s+ 5)
.

Using the previous part, we calculate

y(t) =
1

2
e−t − 1

2
e−2t cos t− 1

2
e−2t sin t+ uπ(t)

(
1

2
e−t+π − 1

2
e−2t+2π cos(t− π)− 1

2
e−2t+2π sin(t− π)

)
=

1

2
e−t − 1

2
e−2t cos t− 1

2
e−2t sin t+ uπ(t)

(
1

2
e−t+π +

1

2
e−2t+2π cos t+

1

2
e−2t+2π sin t

)
.



Problem 10.

Two tanks A and B initially contain 2 gallons of fresh water. Water containing 2 lb salt/gallon flows
into tank A at a rate of 3 gallons/minute. At the same time, water is drained from tank B at a rate of 3
gallon/minute.

The two tanks are connected by two pipes which allow water to flow in only one direction. Specifically,
the first pipe allows water to flow from tank A into tank B at a rate of 4 gallons/minute. The second pipe
allows water to flow from tank B into tank A at a rate of 1 gallon/minute.

(i) Let Q1(t) and Q2(t) be the quantities of salt (measured in pounds) in tanks A and B at time t.
Show that

Q′ =

[
−2 1

2
2 −2

]
Q +

[
6
0

]
.

(ii) Solve the system of differential equations (i) and determine the quantities Q1(t) and Q2(t) of salt
present in each tank at time t. (Do not forget to take into account the initial conditions.) How much
salt will each tank contain as time t→∞?

Solution:

(i) Begin by drawing a picture. We use that

dQ/dt = cin · ratein − cout · rateout.

Consider tank A:
– there is inflow of salt contributing 2lb/gal · 3gal/min = 6 lb salt/minute,

– there is inflow of salt from tank B which contributes 1 · Q2

2 lb salt/min,
– there is outflow of salt to tank B which contributes negatively 4 ·Q1/2 = 2Q1 lb salt/min.

Putting everything together
dQ1

dt
= 6 +

Q2

2
− 2Q1.

Now consider tank B:
– there is inflow of water from tank A which contributes 4 ·Q1/2 = 2Q1 lb/min salt,
– there is outflow of salt from tank B into tank A which contributes 1 ·Q2/2 lb salt/min,
– finally, salt is drained out of tank B, contributing negatively 3 ·Q2/2 lb salt/min.

Putting things together

dQ2

dt
=

1

2
Q2 +

3

2
Q2 − 2Q1 = 2Q2 − 2Q1.

The two equations above can be written in vector form

~Q′ =

[
−2 1

2
2 −2

]
~Q+

[
6
0

]
.

The initial condition is
~Q(0) = 0.

(ii) We find the eigenvalues and eigenvectors of the matrix

A =

[
−2 1

2
2 −2

]
.

Then

A− λI =

[
−2− λ 1

2
2 −2− λ

]
.



The determinant is (−2− λ)2 − 1 = 0. We find

λ1 = −1, λ2 = −3.

We find the eigenvectors

(A+ I)~v1 = 0 =⇒
[
−1 1

2
2 −1

]
~v1 = 0 =⇒ ~v1 =

[
1
2

]
(A+ 3I)~v2 = 0 =⇒

[
1 1

2
2 1

]
~v2 = 0 =⇒ ~v2 =

[
1
−2

]
.

We find

~Qh = c1e
−t
[

1
2

]
+ c2e

−3t
[

1
−2

]
.

We look for a particular solution Qp. In fact, undetermined coefficients suggests that we look for ~Qp
as a constant solution which means

~Q′p = 0 =⇒ A~Qp +

[
6
0

]
= 0 =⇒ ~Qp = −A−1

[
6
0

]
= −1

3

[
−2 − 1

2
−2 −2

] [
6
0

]
=

[
4
4

]
.

The general solution is

~Q = ~Qp + ~Qh =

[
4
4

]
+ c1e

−t
[

1
2

]
+ c2e

−3t
[

1
−2

]
.

We now use the initial condition ~Q(0) = 0 to find the constants c1 and c2. We obtain[
4
4

]
+ c1

[
1
2

]
+ c2

[
1
−2

]
= 0[

1 1
2 −2

] [
c1
c2

]
= −

[
4
4

]
=⇒

[
c1
c2

]
= −

[
1 1
2 −2

]−1 [
4
4

]
=

[
−3
−1

]
.

Therefore

~Q =

[
4
4

]
− 3e−t

[
1
2

]
− e−3t

[
1
−2

]
.

Thus
Q1(t) = 4− 3e−t − e−3t

Q2(t) = 4− 6e−t + 2e−3t.

Clearly
Q1(t)→ 4, Q2(t)→ 4

as t→∞.


