Problem 1.

A colony $y(t)$ of yeast is growing in a bakery according to the differential equation

$$
\frac{d y}{d t}=y^{2}\left(y^{2}-9\right), y(0)=y_{0}>0
$$

(i) Find the critical solutions, indicate their type, draw the phase line and sketch the graphs of some solutions.
(ii) For what initial values $y_{0}>0$ will the yeast colony eventually die out?

Solution:

(i) This is an autonomous differential equation. The critical points are found by setting

$$
f(y)=y^{2}\left(y^{2}-9\right)=0 \Longrightarrow y=0 \text { or } y= \pm 3
$$

We determine the sign of

$$
f(y)=y^{2}\left(y^{2}-9\right)
$$

as follows:

$$
\begin{gathered}
y<-3 \Longrightarrow y^{2}\left(y^{2}-9\right)>0 \\
-3<y<0 \text { or } 0<y<3 \Longrightarrow y^{2}\left(y^{2}-9\right)<0 \\
y>3 \Longrightarrow y^{2}\left(y^{2}-9\right)>0
\end{gathered}
$$

Thus -3 is an asymptotically stable critical point, 0 is semistable, while 3 is unstable critical point. (ii) We need

$$
\lim _{t \rightarrow \infty} y(t)=0
$$

If $0<y_{0}<3$, solutions will converge to the critical point 0 (while for $y_{0} \geq 3$ solutions will diverge to infinity).

Problem 2.

Solve the initial value problem: $y^{\prime}=1+2 x y, y(0)=1$. (Your answer will require a definite integral.)
Solution: We use integrating factors. We have

$$
y^{\prime}-2 x y=1
$$

and the integrating factor is

$$
u=\exp ^{\int-2 x d x}=e^{-x^{2}}
$$

We multiply both sides by the integrating factor u to find

$$
\left(e^{-x^{2}} y\right)^{\prime}=e^{-x^{2}}
$$

Integrating we find

$$
e^{-x^{2}} y=\int_{0}^{x} e^{-t^{2}} d t+C \Longrightarrow y=e^{x^{2}} \int_{0}^{x} e^{-t^{2}} d t+C e^{x^{2}}
$$

Using the initial condition

$$
y(0)=1 \Longrightarrow C=1
$$

Hence

$$
y=e^{x^{2}} \int_{0}^{x} e^{-t^{2}} d t+e^{x^{2}}
$$

Problem 3.

Using undetermined coefficients, find the general solution of the differential equation

$$
y^{\prime \prime}-2 y^{\prime}+2 y=5 \sin t
$$

Solution: We solve the homogeneous equation

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

by solving the characteristic equation

$$
r^{2}-2 r+2=0 \Longrightarrow r=1 \pm i
$$

We find

$$
y_{1}=e^{t} \cos t, y_{2}=e^{t} \sin t
$$

Next, we look for a particular solution in the form

$$
y=A \cos t+B \sin t
$$

We calculate

$$
\begin{gathered}
y^{\prime}=B \cos t-A \sin t \\
y^{\prime \prime}=-A \cos t-B \sin t
\end{gathered}
$$

Hence

$$
y^{\prime \prime}-2 y^{\prime}+2 y=(A-2 B) \cos t+(B+2 A) \sin t=5 \sin t
$$

Then

$$
A=2 B, B+2 A=5 \Longrightarrow A=2, B=1
$$

Thus

$$
y_{p}=2 \cos t+\sin t
$$

We find the general solution

$$
y=2 \cos t+\sin t+C_{1} e^{t} \cos t+C_{2} e^{t} \sin t
$$

Problem 4.

Consider the differential equation

$$
t^{2} y^{\prime \prime}-3 t y^{\prime}+3 y=0, \text { for } t>0
$$

(i) Find the values of r such that $y=t^{r}$ is a solution to the differential equation.
(ii) Check that $y_{1}=t$ and $y_{2}=t^{3}$ form a fundamental pair of solutions.
(iii) Find the general solution of the differential equation

$$
t^{2} y^{\prime \prime}-3 t y^{\prime}+3 y=t^{3} \ln t
$$

Solution:

(i) We have

$$
y=t^{r} \Longrightarrow y^{\prime}=r t^{r-1}, y^{\prime \prime}=r(r-1) t^{r-2}
$$

Substituting we find

$$
\begin{gathered}
t^{2} y^{\prime \prime}-3 t y^{\prime}+3 y=t^{2} \cdot r(r-1) t^{r-2}-3 t \cdot r t^{r-1}+3 t^{r}=\left(r^{2}-4 r+3\right) t^{r}=0 \\
\Longrightarrow r^{2}-4 r+3=0 \Longrightarrow r=1, r=3
\end{gathered}
$$

(ii) We calculate

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
t & t^{3} \\
1 & 3 t^{2}
\end{array}\right|=2 t^{3} \neq 0
$$

hence y_{1}, y_{2} form a fundamental pair of solutions for $t>0$.
(iii) The homogeneous solution is

$$
y_{h}=C_{1} t+C_{2} t^{3}
$$

We use variation of parameters to find the particular solution. We first write the equation in standard form

$$
y^{\prime \prime}-\frac{3}{t} y^{\prime}+\frac{3}{t^{2}} y=t \ln t
$$

Using integration by parts we find

$$
\begin{gathered}
u_{1}=-\int \frac{t \ln t \cdot t^{3}}{2 t^{3}} d t=-\frac{1}{2} \int t \ln t d t \\
=-\frac{1}{2}\left(\frac{1}{2} t^{2} \ln t-\int \frac{1}{2} t^{2} d \ln t\right)=-\frac{1}{4} t^{2} \ln t+\frac{1}{4} \int t^{2} \cdot \frac{1}{t} d t=-\frac{1}{4} t^{2} \ln t+\frac{1}{4} \cdot \frac{t^{2}}{2} .
\end{gathered}
$$

Next,

$$
u_{2}=\int \frac{t \ln t \cdot t}{2 t^{3}} d t=\int \frac{\ln t}{2 t} d t=\frac{1}{4}(\ln t)^{2}
$$

We conclude

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}=\left(-\frac{1}{4} t^{2} \ln t+\frac{1}{4} \cdot \frac{t^{2}}{2}\right) \cdot t+\frac{1}{4}(\ln t)^{2} \cdot t^{3}=-\frac{1}{4} t^{3} \ln t+\frac{t^{3}}{8}+\frac{(\ln t)^{2} \cdot t^{3}}{4}
$$

Therefore

$$
y=y_{h}+y_{p}=C_{1} t+C_{2} t^{3}-\frac{1}{4} t^{3} \ln t+\frac{t^{3}}{8}+\frac{(\ln t)^{2} \cdot t^{3}}{4}
$$

Rearranging constants, this can be rewritten as

$$
y=c_{1} t+c_{2} t^{3}-\frac{1}{4} t^{3} \ln t+\frac{t^{3}(\ln t)^{2}}{4}
$$

for $c_{1}=C_{1}$ and $c_{2}=C_{2}-\frac{1}{8}$.

Problem 5.

Using the Laplace transform, solve the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}+y=t^{10} e^{t}, \quad y(0)=1, y^{\prime}(0)=1
$$

Solution: Write $Y(s)$ for the Laplace transform of the solution y. We Laplace transform

$$
y^{\prime \prime}-2 y^{\prime}+y=t^{10} e^{t}
$$

into

$$
s^{2} Y(s)-s-1-2(s Y(s)-1)+Y(s)=\frac{10!}{(s-1)^{11}}
$$

Rearranging terms, we obtain

$$
(s-1)^{2} Y(s)-(s-1)=\frac{10!}{(s-1)^{11}} \Longrightarrow Y(s)-\frac{1}{s-1}=\frac{10!}{(s-1)^{13}}
$$

after dividing by $(s-1)^{2}$. We now use the inverse Laplace transform to find

$$
y(t)-e^{t}=\frac{1}{12 \cdot 11} \cdot t^{12} e^{t} \Longrightarrow y(t)=e^{t}+\frac{t^{12} e^{t}}{132}
$$

Problem 6.

The general solution of a certain first order system of differential equations $\mathbf{x}^{\prime}=A \mathbf{x}$ is

$$
\mathbf{x}=C_{1} e^{t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2} e^{a t}\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

where a is a non-zero real number.
(i) For what values of a is the origin a (proper) node? Will it be a source or a sink?
(ii) For what values of a is the origin a saddle equilibrium point? Carefully, draw the trajectories in this case.
(iii) For $a=2$, find the matrix exponential $e^{A t}$.

Solution:
(i) A proper node corresponds to real distinct eigenvalues of the same sign. The eigenvalues are 1 and a. Thus we need $a>0$ and $a \neq 1$. The origin will be a source.
(ii) A saddle corresponds to eigenvalues of opposite signs. Thus we need $a<0$.
(iii) We have

$$
\Psi(t)=\left[\begin{array}{cc}
e^{t} & -2 e^{2 t} \\
2 e^{t} & e^{2 t}
\end{array}\right]
$$

Thus

$$
\Psi(0)=\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right] \Longrightarrow \Psi(0)^{-1}=\frac{1}{5}\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]
$$

We calculate

$$
e^{A t}=\Psi(t) \cdot \Psi(0)^{-1}=\frac{1}{5}\left[\begin{array}{cc}
e^{t} & -2 e^{2 t} \\
2 e^{t} & e^{2 t}
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]=\frac{1}{5}\left[\begin{array}{cc}
e^{t}+4 e^{2 t} & 2 e^{t}-2 e^{2 t} \\
2 e^{t}-2 e^{2 t} & 4 e^{t}+e^{2 t}
\end{array}\right]
$$

Problem 7.

Find the general real-valued solution of the system

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
1 & 1 \\
-2 & 3
\end{array}\right] \mathbf{x}
$$

Solution: We first find the eigenvalues and eigenvectors. We have

$$
A-\lambda I=\left[\begin{array}{cc}
1-\lambda & 1 \\
-2 & 3-\lambda
\end{array}\right]
$$

whose determinant equals

$$
(1-\lambda)(3-\lambda)+2=0 \Longrightarrow \lambda^{2}-4 \lambda+5=0 \Longrightarrow \lambda=2 \pm i .
$$

We use only one of the eigenvalues, say $\lambda=2+i$. We find the eigenvector

$$
(A-(2+i) I) \vec{v}=0 \Longrightarrow\left[\begin{array}{cc}
-1+i & 1 \\
-2 & 1-i
\end{array}\right] \vec{v}=0 \Longrightarrow \vec{v}=\left[\begin{array}{c}
1-i \\
2
\end{array}\right]
$$

We calculate the complex valued solution

$$
\vec{x}_{c}=e^{(2+i) t} \cdot\left[\begin{array}{c}
1-i \\
2
\end{array}\right]=e^{2 t}(\cos t+i \sin t) \cdot\left[\begin{array}{c}
1-i \\
2
\end{array}\right]=e^{2 t}\left[\begin{array}{c}
\cos t+\sin t+i(\sin t-\cos t) \\
2 \cos t+2 i \sin t
\end{array}\right]
$$

Taking the real and imaginary parts, we find

$$
\vec{x}_{1}=e^{2 t}\left[\begin{array}{c}
\cos t+\sin t \\
2 \cos t
\end{array}\right], \vec{x}_{2}=e^{2 t}\left[\begin{array}{c}
\sin t-\cos t \\
2 \sin t
\end{array}\right]
$$

Then

$$
x=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}=c_{1} e^{2 t}\left[\begin{array}{c}
\cos t+\sin t \\
2 \cos t
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{c}
\sin t-\cos t \\
2 \sin t
\end{array}\right]
$$

This is not the only possible form of the answer.

Problem 8.

Consider the differential equation

$$
y^{\prime \prime}+2 x y^{\prime}+2 y=0
$$

whose solutions are power series in x centered at $x_{0}=0$.
(i) Find the recurrence relation between the coefficients of the power series y.
(ii) Write down the first three non-zero terms in each of the two linearly independent solutions.
(iii) What is the radius of convergence of the solutions which contains only even powers of x ?

Solution:

(i) We write

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

We calculate

$$
\begin{gathered}
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1} \Longrightarrow 2 x y^{\prime}=\sum_{n=0}^{\infty} 2 n a_{n} x^{n}, \\
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} x^{n}
\end{gathered}
$$

by shifting $n \rightarrow n+2$ in the last sum. We compute

$$
y^{\prime \prime}+2 x y^{\prime}+2 y=\sum_{n=0}^{\infty}\left[(n+1)(n+2) a_{n+2}+2 n a_{n}+2 a_{n}\right] x^{n}=0 .
$$

Therefore

$$
\begin{gathered}
(n+1)(n+2) a_{n+2}+2 n a_{n}+2 a_{n}=0 \Longrightarrow(n+1)(n+2) a_{n+2}+2(n+1) a_{n}=0 \\
\Longrightarrow(n+2) a_{n+2}+2 a_{n}=0 .
\end{gathered}
$$

(ii) For $n=0$, we obtain

$$
2 a_{2}+2 a_{0}=0 \Longrightarrow a_{2}=-a_{0}
$$

For $n=2$, we have

$$
4 a_{4}+2 a_{2}=0 \Longrightarrow a_{4}=-\frac{a_{2}}{2}=\frac{a_{0}}{2}
$$

Similarly, for $n=1$, we have

$$
3 a_{3}+2 a_{1}=0 \Longrightarrow a_{3}=-\frac{2}{3} a_{1}
$$

For $n=3$, we have

$$
5 a_{5}+2 a_{3}=0 \Longrightarrow a_{5}=-\frac{2}{5} a_{3}=\frac{4}{15} a_{1}
$$

Clearly, a_{0} determines all the even power coefficients, and a_{1} determines the odd power coefficients.
Then the general solution can be written in the form

$$
y=a_{0}\left(1-x^{2}+\frac{x^{4}}{2}+\ldots\right)+a_{1}\left(x-\frac{2}{3} x^{3}+\frac{4}{15} x^{5}+\ldots\right)
$$

The two linearly independent solutions are

$$
y_{1}=1-x^{2}+\frac{x^{4}}{2}+\ldots
$$

and

$$
y_{2}=x-\frac{2}{3} x^{3}+\frac{4}{15} x^{5}+\ldots
$$

(iii) For the even power solution

$$
y_{1}=\sum_{k} a_{2 k} x^{2 k}
$$

we use the ratio test. We calculate

$$
\rho=\lim _{k \rightarrow \infty}\left|\frac{a_{2 k+2} x^{2 k+2}}{a_{2 k} x^{2 k}}\right|=\lim _{k \rightarrow \infty}\left|\frac{-2}{2 k+2} x^{2}\right|=0<1 .
$$

To simplify the fraction we used the recurrence found in (i):

$$
(2 k+2) a_{2 k+2}+2 a_{2 k}=0 \Longrightarrow \frac{a_{2 k+2}}{a_{2 k}}=-\frac{2}{2 k+2} .
$$

Thus by the ratio test, we always have convergence or equivalently, the radius of convergence is infinite.

Problem 9.

(i) Find the inverse Laplace transform of the function

$$
\frac{1}{(s+1)\left(s^{2}+4 s+5\right)} .
$$

(ii) Using the Laplace transform, solve the initial value problem

$$
y^{\prime \prime}+4 y^{\prime}+5 y=e^{-t}+e^{-t+\pi} u_{\pi}(t), \quad y(0)=0, y^{\prime}(0)=0
$$

Solution:

(i) We use partial fractions to write

$$
\frac{1}{(s+1)\left(s^{2}+4 s+5\right)}=\frac{A}{s+1}+\frac{B(s+2)+C}{s^{2}+4 s+5}
$$

We solve

$$
A\left(s^{2}+4 s+5\right)+B(s+1)(s+2)+C(s+1)=1
$$

From here

$$
A=\frac{1}{2}, B=-\frac{1}{2}, C=-\frac{1}{2}
$$

Thus the fraction becomes

$$
\frac{1}{(s+1)\left(s^{2}+4 s+5\right)}=\frac{1}{2} \frac{1}{s+1}-\frac{1}{2} \cdot \frac{(s+2)}{(s+2)^{2}+1}-\frac{1}{2} \cdot \frac{1}{(s+2)^{2}+1}
$$

The inverse Laplace transform is

$$
\frac{1}{2} e^{-t}-\frac{1}{2} e^{-2 t} \cos t-\frac{1}{2} e^{-2 t} \sin t
$$

(ii) We Laplace transform the differential equation

$$
y^{\prime \prime}+4 y^{\prime}+5 y=e^{-t}+e^{-t+\pi} u_{\pi}(t)
$$

into

$$
s^{2} Y(s)+4 Y(s)+5 Y(s)=\frac{1}{s+1}+\frac{e^{-s \pi}}{s+1} \Longrightarrow Y(s)=\frac{1}{(s+1)\left(s^{2}+4 s+5\right)}+\frac{e^{-s+\pi}}{(s+1)\left(s^{2}+4 s+5\right)}
$$

Using the previous part, we calculate

$$
\begin{aligned}
y(t)= & \frac{1}{2} e^{-t}-\frac{1}{2} e^{-2 t} \cos t-\frac{1}{2} e^{-2 t} \sin t+u_{\pi}(t)\left(\frac{1}{2} e^{-t+\pi}-\frac{1}{2} e^{-2 t+2 \pi} \cos (t-\pi)-\frac{1}{2} e^{-2 t+2 \pi} \sin (t-\pi)\right) \\
& =\frac{1}{2} e^{-t}-\frac{1}{2} e^{-2 t} \cos t-\frac{1}{2} e^{-2 t} \sin t+u_{\pi}(t)\left(\frac{1}{2} e^{-t+\pi}+\frac{1}{2} e^{-2 t+2 \pi} \cos t+\frac{1}{2} e^{-2 t+2 \pi} \sin t\right)
\end{aligned}
$$

Problem 10.

Two tanks A and B initially contain 2 gallons of fresh water. Water containing 2 lb salt/gallon flows into tank A at a rate of 3 gallons/minute. At the same time, water is drained from tank B at a rate of 3 gallon/minute.

The two tanks are connected by two pipes which allow water to flow in only one direction. Specifically, the first pipe allows water to flow from tank A into tank B at a rate of 4 gallons $/$ minute. The second pipe allows water to flow from tank B into tank A at a rate of 1 gallon/minute.
(i) Let $Q_{1}(t)$ and $Q_{2}(t)$ be the quantities of salt (measured in pounds) in tanks A and B at time t. Show that

$$
\mathbf{Q}^{\prime}=\left[\begin{array}{cc}
-2 & \frac{1}{2} \\
2 & -2
\end{array}\right] \mathbf{Q}+\left[\begin{array}{l}
6 \\
0
\end{array}\right]
$$

(ii) Solve the system of differential equations (i) and determine the quantities $Q_{1}(t)$ and $Q_{2}(t)$ of salt present in each tank at time t. (Do not forget to take into account the initial conditions.) How much salt will each tank contain as time $t \rightarrow \infty$?

Solution:

(i) Begin by drawing a picture. We use that

$$
d Q / d t=c_{\text {in }} \cdot \text { rate }_{\text {in }}-c_{\text {out }} \cdot \text { rate }_{\text {out }}
$$

Consider tank A:

- there is inflow of salt contributing $2 \mathrm{lb} / \mathrm{gal} \cdot 3 \mathrm{gal} / \mathrm{min}=6 \mathrm{lb}$ salt $/ \mathrm{minute}$,
- there is inflow of salt from tank B which contributes $1 \cdot \frac{Q_{2}}{2} \mathrm{lb}$ salt $/ \mathrm{min}$,
- there is outflow of salt to tank B which contributes negatively $4 \cdot Q_{1} / 2=2 Q_{1} \mathrm{lb}$ salt $/ \mathrm{min}$.

Putting everything together

$$
\frac{d Q_{1}}{d t}=6+\frac{Q_{2}}{2}-2 Q_{1}
$$

Now consider tank B:

- there is inflow of water from tank A which contributes $4 \cdot Q_{1} / 2=2 Q_{1} \mathrm{lb} / \mathrm{min}$ salt,
- there is outflow of salt from tank B into tank A which contributes $1 \cdot Q_{2} / 2 \mathrm{lb}$ salt $/ \mathrm{min}$,
- finally, salt is drained out of tank B, contributing negatively $3 \cdot Q_{2} / 2 \mathrm{lb} \mathrm{salt} / \mathrm{min}$.

Putting things together

$$
\frac{d Q_{2}}{d t}=\frac{1}{2} Q_{2}+\frac{3}{2} Q_{2}-2 Q_{1}=2 Q_{2}-2 Q_{1}
$$

The two equations above can be written in vector form

$$
\vec{Q}^{\prime}=\left[\begin{array}{cc}
-2 & \frac{1}{2} \\
2 & -2
\end{array}\right] \vec{Q}+\left[\begin{array}{l}
6 \\
0
\end{array}\right]
$$

The initial condition is

$$
\vec{Q}(0)=0
$$

(ii) We find the eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{cc}
-2 & \frac{1}{2} \\
2 & -2
\end{array}\right]
$$

Then

$$
A-\lambda I=\left[\begin{array}{cc}
-2-\lambda & \frac{1}{2} \\
2 & -2-\lambda
\end{array}\right]
$$

The determinant is $(-2-\lambda)^{2}-1=0$. We find

$$
\lambda_{1}=-1, \quad \lambda_{2}=-3
$$

We find the eigenvectors

$$
\begin{aligned}
& (A+I) \vec{v}_{1}=0 \Longrightarrow\left[\begin{array}{cc}
-1 & \frac{1}{2} \\
2 & -1
\end{array}\right] \vec{v}_{1}=0 \Longrightarrow \vec{v}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& (A+3 I) \vec{v}_{2}=0 \Longrightarrow\left[\begin{array}{cc}
1 & \frac{1}{2} \\
2 & 1
\end{array}\right] \vec{v}_{2}=0 \Longrightarrow \vec{v}_{2}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] .
\end{aligned}
$$

We find

$$
\vec{Q}_{h}=c_{1} e^{-t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2} e^{-3 t}\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

We look for a particular solution Q_{p}. In fact, undetermined coefficients suggests that we look for \vec{Q}_{p} as a constant solution which means
$\vec{Q}_{p}^{\prime}=0 \Longrightarrow A \vec{Q}_{p}+\left[\begin{array}{l}6 \\ 0\end{array}\right]=0 \Longrightarrow \vec{Q}_{p}=-A^{-1}\left[\begin{array}{l}6 \\ 0\end{array}\right]=-\frac{1}{3}\left[\begin{array}{cc}-2 & -\frac{1}{2} \\ -2 & -2\end{array}\right]\left[\begin{array}{l}6 \\ 0\end{array}\right]=\left[\begin{array}{l}4 \\ 4\end{array}\right]$.
The general solution is

$$
\vec{Q}=\vec{Q}_{p}+\vec{Q}_{h}=\left[\begin{array}{l}
4 \\
4
\end{array}\right]+c_{1} e^{-t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2} e^{-3 t}\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

We now use the initial condition $\vec{Q}(0)=0$ to find the constants c_{1} and c_{2}. We obtain

$$
\left[\begin{array}{l}
4 \\
4
\end{array}\right]+c_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2}\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=0
$$

$$
\left[\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=-\left[\begin{array}{l}
4 \\
4
\end{array}\right] \Longrightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=-\left[\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right]^{-1}\left[\begin{array}{l}
4 \\
4
\end{array}\right]=\left[\begin{array}{c}
-3 \\
-1
\end{array}\right]
$$

Therefore

$$
\vec{Q}=\left[\begin{array}{l}
4 \\
4
\end{array}\right]-3 e^{-t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]-e^{-3 t}\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

Thus

$$
\begin{gathered}
Q_{1}(t)=4-3 e^{-t}-e^{-3 t} \\
Q_{2}(t)=4-6 e^{-t}+2 e^{-3 t}
\end{gathered}
$$

Clearly

$$
Q_{1}(t) \rightarrow 4, Q_{2}(t) \rightarrow 4
$$

as $t \rightarrow \infty$.

