Problem 1. [12 points.]
Consider the linear first order equation

$$
t^{2} y^{\prime}+3 t y=2 e^{t^{2}}
$$

(i) [4 points.] Compute an integrating factor for the differential equation.

We bring the equation into standard linear form

$$
y^{\prime}+\frac{3}{t} y=\frac{2 e^{t^{2}}}{t^{2}}
$$

We find the integrating factor

$$
u=e^{\int \frac{3}{t} d t}=e^{3 \ln t}=t^{3}
$$

(ii) [4 points.] Find the general solution.

We have

$$
\begin{gathered}
(u y)^{\prime}=u \cdot \frac{2 e^{t}}{t^{2}} \Longrightarrow\left(t^{3} y\right)^{\prime}=2 t e^{t^{2}} \Longrightarrow t^{3} y=e^{t^{2}}+C \\
y=\frac{e^{t^{2}}+C}{t^{3}}
\end{gathered}
$$

(iii) [4 points.] Find the solution which satisfies the initial condition $y(1)=0$. What is the maximal interval where the solution is defined?

We solve

$$
y(1)=e+C=0 \Longrightarrow C=-e
$$

Hence

$$
y=\frac{e^{t^{2}}-e}{t^{3}}
$$

The solution is defined over the interval $(0, \infty)$.

Problem 2. [10 points.]

A tank originally contains 10 gallons of fresh water. Water containing 3 lb of salt per gallon is poured into the tank at a rate of $2 \mathrm{gal} / \mathrm{min}$. The mixture is allowed to leave the tank at the same rate.
(i) [5 points.] Write down the differential equation for the amount $Q(t)$ of salt in the tank at time t.

We use that $d Q / d t=$ rate in - rate out, and that rate of salt $=$ rate of water \cdot concentration of salt. Hence

$$
\frac{d Q}{d t}=2 \cdot 3-2 \cdot \frac{Q}{10}=6-\frac{Q}{5} .
$$

(ii) [5 points.] Find the amount of salt in the tank after 10 minutes.

We solve by separation of variables

$$
\begin{gathered}
\frac{d Q}{d t}=\frac{30-Q}{5} \Longrightarrow \frac{d Q}{30-Q}=\frac{d t}{5} \Longrightarrow-\ln (30-Q)=\frac{t}{5}+K \Longrightarrow \\
Q(t)=30-C e^{-t / 5} .
\end{gathered}
$$

Since $Q(0)=0$, we obtain $C=30$ hence

$$
Q(t)=30\left(1-e^{-t / 5}\right) \Longrightarrow Q(10)=30\left(1-e^{-2}\right)
$$

Problem 3. [10 points.]
Consider the differential equation

$$
\left(3 x^{2}+y^{2}\right)+(2 x y+1) y^{\prime}=0
$$

(i) [4 points.] Explain why the differential equation is exact.

We set

$$
M=3 x^{2}+y^{2}, N=2 x y+1
$$

We calculate

$$
M_{y}=2 y, N_{x}=2 y \Longrightarrow M_{y}=N_{x} \Longrightarrow \text { exact equation. }
$$

(ii) $[6$ points. $]$ Solve the differential equation. It suffices to give the solution implicitly.

We look for a potential function

$$
f_{x}=3 x^{2}+y^{2}, f_{y}=2 x y+1
$$

We integrate the first equation

$$
f=x^{3}+x y^{2}+h(y)
$$

and substitute into the second

$$
f_{y}=2 x y+h^{\prime}(y)=2 x y+1 \Longrightarrow h^{\prime}(y)=1 \Longrightarrow h(y)=y
$$

Thus

$$
f=x^{3}+x y^{2}+y
$$

and the implicit solution is

$$
x^{3}+x y^{2}+y=C
$$

Problem 4. [10 points.]
Consider the autonomous equation

$$
\frac{d y}{d t}=4 y-y^{2} .
$$

(i) [7 points.] Determine the critical points and indicate their type i.e. asymptotically stable, unstable, semistable. Sketch the phase line.

The critical points are found by solving

$$
4 y-y^{2}=0 \Longrightarrow y=0, y=4 .
$$

We have
$4 y-y^{2}<0$, for $y<0,4 y-y^{2}>0$ for $0<y<4$, and $4 y-y^{2}<0$ for $y>4$.
Therefore $y=0$ is unstable, $y=4$ is asymptotically stable.
(ii) [3 points.] What is the long-term behavior of the solution satisfying the initial value $y(0)=$ 2 ?

Since $0<y(0)<2$, we have $y(t) \rightarrow 4$ as $t \rightarrow \infty$.

Problem 5. [10 points.]
Find the general solution of the differential equation $y^{\prime \prime}+4 y^{\prime}+13 y=0$.
We form the characteristic equation

$$
r^{2}+4 r+13=0
$$

which gives $r_{1,2}=-2 \pm 3 i$. We obtain the fundamental pair

$$
y_{1}=e^{-2 t} \cos 3 t, y_{2}=e^{-2 t} \sin 3 t
$$

hence

$$
y=e^{-2 t}\left(c_{1} \cos 3 t+c_{2} \sin 3 t\right) .
$$

Problem 6. [8 points.]
Consider the differential equation

$$
y^{\prime \prime}+2 t y^{\prime}+q(t) y=0
$$

for some unknown function $q(t)$.
Two solutions y_{1} and y_{2} of the differential equation satisfy the initial conditions

$$
\begin{gathered}
y_{1}(0)=1, y_{2}(0)=2 \\
y_{1}^{\prime}(0)=-1, y_{2}^{\prime}(0)=3
\end{gathered}
$$

(i) [4 points] Determine the Wronskian $W\left(y_{1}, y_{2}\right)$ as a function of t. Do y_{1} and y_{2} form a fundamental pair of solutions?

By Abel's theorem

$$
W\left(y_{1}, y_{2}\right)=C \exp \left(-\int 2 t d t\right)=C \exp \left(-t^{2}\right)
$$

The initial conditions give

$$
W\left(y_{1}, y_{2}\right)(0)=y_{1}(0) y_{2}^{\prime}(0)-y_{2}(0) y_{1}^{\prime}(0)=5
$$

hence $C=5$ and

$$
W\left(y_{1}, y_{2}\right)=5 e^{-e^{2}} \neq 0
$$

Thus y_{1}, y_{2} form a fundamental pair.
(ii) [4 points] A third solution satisfies the initial value problem

$$
y(0)=1, y^{\prime}(0)=7
$$

Express this solution in terms of y_{1} and y_{2}.
We need $y_{3}=c_{1} y_{1}+c_{2} y_{2}$ and imposing the initial conditions we have

$$
\begin{gathered}
y_{3}(0)=c_{1} y_{1}(0)+c_{2} y_{2}(0) \Longrightarrow c_{1}+2 c_{2}=1 \\
y_{3}^{\prime}(0)=c_{1} y_{1}^{\prime}(0)+c_{2} y_{2}^{\prime}(0) \Longrightarrow-c_{1}+3 c_{2}=7
\end{gathered}
$$

We find

$$
c_{1}=-\frac{11}{5}, c_{2}=\frac{8}{5}
$$

hence

$$
y_{3}=-\frac{11}{5} y_{1}+\frac{8}{5} y_{2}
$$

