Math 20D - Fall 2011 - Final Exam

Problem 1.

A population $y(t)$ of turtles is growing on an island according to the logistic equation with harvesting

$$
\frac{d y}{d t}=y(600-y)-50,000, y(0)=y_{0}>0 .
$$

(i) Find the critical solutions, indicate their type, draw the phase line and sketch the graphs of some solutions.
(ii) Assume that at time $t=0$ there are 200 turtles on the island. How many turtles will there be on the island in the long run?

Answer:

(i) We find the critical points

$$
\frac{d y}{d t}=y(600-y)-50,000=(-y+100)(y-500)=0 \Longrightarrow y=100 \text { and } y=500 .
$$

The parabola $y(600-y)-50,000$ is concave, so the signs are negative for $y<100$, positive for $100<y<500$ and negative for $y>500$. In particular, the function y is decreasing for $y<100$, increasing for $100<y<500$ and decreasing for $y>500$. Drawing the phase line and sketching some of the solutions, we see that $y=100$ repels solutions hence it is an unstable critical point. On the other hand $y=500$ attracts solutions, hence $y=500$ is a stable critical point.
(ii) Since $y(0)=200$ which falls in the interval $(100,500)$, it follows that the solution converges to the stable critical point

$$
\lim _{t \rightarrow \infty} y(t)=500 .
$$

Problem 2.

Consider the inhomogeneous differential equation

$$
(\star) x^{2} y^{\prime \prime}-x y^{\prime}+y=x \ln x, \text { for } x>0
$$

This problem has three main parts (A), (B), (C), all independent of each other.
(A.) Check that $y_{1}=x$ is a solution to the homogeneous differential equation. We now proceed to find a second solution y_{2} to the homogeneous equation.
(B.1) Show that for any fundamental pair of solutions $\left(y_{1}, y_{2}\right)$ to the homogeneous equation we must have $W\left(y_{1}, y_{2}\right)=C x$ for some constant $C \neq 0$.
(B.2) Set $y_{1}=x$. Consider a second solution y_{2} to the the homogeneous equation satisfying the initial values

$$
y_{2}(1)=0, y_{2}^{\prime}(1)=1
$$

Show that $W\left(y_{1}, y_{2}\right)=x$.
(B.3) Use part (B.2) to show that the solution y_{2} must satisfy

$$
x y_{2}^{\prime}-y_{2}=x
$$

(B.4) Use (B3) to find a second solution y_{2}.
(C) Using the solutions

$$
y_{1}=x \text { and } y_{2}=x \ln x
$$

to the homogeneous equation, find the general solution to the inhomogeneous equation (\star) by variation of parameters.

Answer:

(A) We verify that $y_{1}=x$ is a solution by computing $y_{1}^{\prime}=1, y_{1}^{\prime \prime}=0$. Direct computation then shows that the differential equation is verified

$$
x^{2} y_{1}^{\prime \prime}-x y_{1}^{\prime}+y_{1}=0
$$

(B1) This follows by Abel's theorem. We first bring the equation in standard form

$$
y^{\prime \prime}-\frac{1}{x} y+\frac{1}{x^{2}} y=0
$$

Abel's theorem states that

$$
W\left(y_{1}, y_{2}\right)=C \exp \left(\int \frac{1}{x} d x\right)=C \exp (\ln x)=C x
$$

as needed.
(B2) We compute

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
x & y_{2} \\
1 & y_{2}^{\prime}
\end{array}\right|=x y_{2}^{\prime}-y_{2}
$$

Evaluating at $x=1$ we find

$$
W\left(y_{1}, y_{2}\right)(1)=1 \cdot y_{2}^{\prime}(1)-y_{2}(1)=1
$$

using the initial conditions $y_{2}(1)=0, y_{2}^{\prime}(1)=1$. Since we already showed in (B1) that $W\left(y_{1}, y_{2}\right)=$ $C x$ it follows

$$
W\left(y_{1}, y_{2}\right)(1)=C \cdot 1=C
$$

from where $C=1$ by comparing with the preceding equation. Thus $W\left(y_{1}, y_{2}\right)=x$.
(B3) We showed in part (B2) that

$$
W\left(y_{1}, y_{2}\right)=x y_{2}^{\prime}-y_{2} \text { and } W\left(y_{1}, y_{2}\right)=x
$$

from where the conclusion follows.
(B4) To find y_{2} we use integrating factors. We first write the equation $x y_{2}^{\prime}-y_{2}=x$ in standard form

$$
y_{2}^{\prime}-\frac{1}{x} y_{2}=1
$$

The integrating factor is

$$
\mu=\exp \left(-\int \frac{1}{x}\right)=\exp (-\ln x)=\frac{1}{x} .
$$

Multiplying both sides by the integrating factor we find

$$
\left(\frac{1}{x} y_{2}\right)^{\prime}=\frac{1}{x} \Longrightarrow \frac{1}{x} y_{2}=\ln x+K \Longrightarrow y_{2}=x \ln x+K x
$$

To find the constant K we use the initial value $y_{2}(1)=0$ which yields $K=0$ so that

$$
y_{2}=x \ln x .
$$

(C) We bring the equation to be solved into standard form

$$
y^{\prime \prime}-\frac{1}{x} y^{\prime}+\frac{1}{x^{2}} y=\frac{\ln x}{x}
$$

We have computed $W\left(y_{1}, y_{2}\right)=x$ above. By variation of parameters a particular solution is

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}
$$

We have
$u_{1}=-\int \frac{\ln x}{x} \cdot \frac{y_{2}}{W} d x=-\int \frac{\ln x}{x} \cdot \frac{x \ln x}{x} d x=-\int \frac{(\ln x)^{2}}{x}=-\int(\ln x)^{2} \cdot(\ln x)^{\prime} d x=-\frac{1}{3}(\ln x)^{3}$.
Similarly,

$$
u_{2}=\int \frac{\ln x}{x} \cdot \frac{y_{1}}{W} d x=\int \frac{\ln x}{x} \cdot \frac{x}{x} d x=\int \frac{\ln x}{x} d x=\int(\ln x) \cdot(\ln x)^{\prime} d x=\frac{1}{2}(\ln x)^{2} .
$$

A particular solution is found by substituting into the above expression

$$
y_{p}=-\frac{1}{3}(\ln x)^{3} \cdot x+\frac{1}{2}(\ln x)^{2} \cdot x \ln x=\frac{1}{6} x(\ln x)^{3} .
$$

The general solution takes the form

$$
y=y_{p}+y_{h}=y_{p}+c_{1} y_{1}+c_{2} y_{2}=\frac{1}{6} x(\ln x)^{3}+c_{1} x+c_{2} x \ln x .
$$

Problem 3.

Consider the system $\vec{x}^{\prime}=A \vec{x}$ where

$$
A=\left[\begin{array}{cc}
-2 & -8 \\
1 & -8
\end{array}\right]
$$

The eigenvalues are $\lambda_{1}=-4$ and $\lambda_{2}=-6$. (You do not need to check this fact.)
(i) Find a fundamental pair of solutions to the system.
(ii) Draw the trajectories of the general solution. What is the type of the phase portrait you obtained?
(iii) Calculate the matrix exponential $e^{A t}$.
(iv) Solve the initial value problem $\vec{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(v) Use variation of parameters to find a particular solution the following inhomogeneous system

$$
\vec{x}^{\prime}=A x+\left[\begin{array}{c}
12 t \\
0
\end{array}\right] .
$$

Answer:

(i) We find eigenvectors for the two eigenvalues. Letting $A=\left[\begin{array}{cc}-2 & -8 \\ 1 & -8\end{array}\right]$ we compute for the first eigenvalue

$$
A+4 I=\left[\begin{array}{ll}
2 & -8 \\
1 & -4
\end{array}\right] \Longrightarrow \vec{v}_{1}=\left[\begin{array}{l}
4 \\
1
\end{array}\right] .
$$

For the second eigenvalue, we compute

$$
A+6 I=\left[\begin{array}{ll}
4 & -8 \\
1 & -2
\end{array}\right] \Longrightarrow \vec{v}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

We form the two fundamental solutions

$$
\vec{x}_{1}=e^{-4 t}\left[\begin{array}{l}
4 \\
1
\end{array}\right], \vec{x}_{2}=e^{-6 t}\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

(ii) The general solution is

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}=c_{1} e^{-4 t}\left[\begin{array}{l}
4 \\
1
\end{array}\right]+c_{2} e^{-6 t}\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

When $t \rightarrow-\infty$, the solutions are of large magnitude and follow the dominant term $e^{-6 t}$ in the direction of the vector $\left[\begin{array}{l}2 \\ 1\end{array}\right]$. When $t \varnothing \infty$, the solutions approach zero, and they follow the dominant term $e^{-4 t}$ in the direction $\left[\begin{array}{l}4 \\ 1\end{array}\right]$. The origin is a node sink.
(iii) We have

$$
e^{A t}=\Phi(t)=\Psi(t) \cdot \Psi(0)^{-1}
$$

We find the fundamental matrix

$$
\Psi(t)=\left[\begin{array}{cc}
4 e^{-4 t} & 2 e^{-6 t} \\
e^{-4 t} & e^{-6 t}
\end{array}\right]
$$

Thus

$$
\Psi(0)=\left[\begin{array}{ll}
4 & 2 \\
1 & 1
\end{array}\right] \Longrightarrow \Psi(0)^{-1}=\frac{1}{2}\left[\begin{array}{cc}
1 & -2 \\
-1 & 4
\end{array}\right]
$$

Substituting we find

$$
e^{A t}=\left[\begin{array}{cc}
4 e^{-4 t} & 2 e^{-6 t} \\
e^{-4 t} & e^{-6 t}
\end{array}\right] \cdot \frac{1}{2}\left[\begin{array}{cc}
1 & -2 \\
-1 & 4
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
4 e^{-4 t}-2 e^{-6 t} & -8 e^{-4 t}+8 e^{-6 t} \\
e^{-4 t}-e^{-6 t} & -2 e^{-4 t}+4 e^{-6 t}
\end{array}\right]
$$

(iv) We have

$$
\vec{x}=e^{A t} \cdot \vec{x}_{0}=\frac{1}{2}\left[\begin{array}{cc}
4 e^{-4 t}-2 e^{-6 t} & -8 e^{-4 t}+8 e^{-6 t} \\
e^{-4 t}-e^{-6 t} & -2 e^{-4 t}+4 e^{-6 t}
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
-4 e^{-4 t}+6 e^{-6 t} \\
-e^{-4 t}+3 e^{-6 t}
\end{array}\right] .
$$

(v) We compute

$$
\vec{x}=\Psi(t) \int \Psi(t)^{-1}\left[\begin{array}{c}
12 t \\
0
\end{array}\right] d t
$$

We have

$$
\Psi(t)^{-1}=\frac{1}{2 e^{-10 t}}\left[\begin{array}{cc}
e^{-6 t} & -2 e^{-6 t} \\
-e^{-4 t} & 4 e^{-4 t}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
e^{4 t} & -2 e^{4 t} \\
-e^{6 t} & 4 e^{6 t}
\end{array}\right]
$$

Thus

$$
\begin{gathered}
\vec{x}=\left[\begin{array}{cc}
4 e^{-4 t} & 2 e^{-6 t} \\
e^{-4 t} & e^{-6 t}
\end{array}\right] \cdot \int \frac{1}{2}\left[\begin{array}{cc}
e^{4 t} & -2 e^{4 t} \\
-e^{6 t} & 4 e^{6 t}
\end{array}\right] \cdot\left[\begin{array}{c}
12 t \\
0
\end{array}\right] \\
=\left[\begin{array}{cc}
4 e^{-4 t} & 2 e^{-6 t} \\
e^{-4 t} & e^{-6 t}
\end{array}\right] \int\left[\begin{array}{c}
6 t e^{4 t} \\
-6 t e^{6 t}
\end{array}\right] \\
=\left[\begin{array}{cc}
4 e^{-4 t} & 2 e^{-6 t} \\
e^{-4 t} & e^{-6 t}
\end{array}\right] \cdot\left[\begin{array}{c}
\frac{3}{2}\left(t-\frac{1}{4}\right) e^{4 t} \\
-\left(t-\frac{1}{6}\right) e^{6 t}
\end{array}\right]=\left[\begin{array}{c}
4 t-\frac{7}{6} \\
\frac{1}{2} t-\frac{5}{24}
\end{array}\right] .
\end{gathered}
$$

The integrals were computed via integration by parts. For instance

$$
\int 6 t e^{6 t} d t=\int t\left(e^{6 t}\right)^{\prime} d t=t e^{6 t}-\int e^{6 t} d t=t e^{6 t}-\frac{1}{6} e^{6 t}=\left(t-\frac{1}{6}\right) e^{6 t}
$$

The second integral is similar

$$
\int 6 t e^{4 t} d t=\int \frac{3}{2} t\left(e^{4 t}\right)^{\prime} d t=\frac{3}{2}\left(t e^{4 t}-\int e^{4 t} d t\right)=\frac{3}{2}\left(t-\frac{1}{4}\right) e^{4 t}
$$

Problem 4.

Find two independent real valued solutions of the system

$$
\vec{x}^{\prime}=\left[\begin{array}{cc}
1 & 1 \\
-5 & 3
\end{array}\right] \vec{x}
$$

Answer: We write $A=\left[\begin{array}{cc}1 & 1 \\ -5 & 3\end{array}\right]$. We compute $\operatorname{Tr} A=4$, $\operatorname{det} A=8$ so the characteristic polynomial is

$$
\lambda^{2}-4 \lambda+8=0 \Longrightarrow(\lambda-2)^{2}+4=0 \Longrightarrow \lambda-2= \pm 2 i \Longrightarrow \lambda=2 \pm 2 i .
$$

We use only one of the eigenvalues below, say $\lambda=2+2 i$. We find an eigenvector by computing

$$
A-(2+2 i) I=A=\left[\begin{array}{cc}
1-(2+2 i) & 1 \\
-5 & 3-(2+2 i)
\end{array}\right]=A=\left[\begin{array}{cc}
-1-2 i & 1 \\
-5 & 1-2 i
\end{array}\right] \Longrightarrow \vec{v}=\left[\begin{array}{c}
1 \\
1+2 i
\end{array}\right]
$$

Thus a complex valued solution is given by

$$
\begin{gathered}
\vec{x}_{1}=e^{(2+2 i) t}\left[\begin{array}{c}
1 \\
1+2 i
\end{array}\right]=e^{2 t}(\cos 2 t+i \sin 2 t)\left[\begin{array}{c}
1 \\
1+2 i
\end{array}\right] \\
=e^{2 t}\left[\begin{array}{c}
\cos 2 t+i \sin 2 t \\
(1+2 i)(\cos 2 t+i \sin 2 t)
\end{array}\right]=e^{2 t}\left[\begin{array}{c}
\cos 2 t+i \sin 2 t \\
\cos 2 t-2 \sin 2 t+i(2 \cos 2 t+\sin 2 t)
\end{array}\right] .
\end{gathered}
$$

We find the real valued solutions by taking the real and imaginary part of the complex valued solution. We have

$$
u_{1}=e^{2 t}\left[\begin{array}{c}
\cos 2 t \\
\cos 2 t-2 \sin 2 t
\end{array}\right], v_{1}=e^{2 t}\left[\begin{array}{c}
\sin 2 t \\
2 \cos 2 t+\sin 2 t
\end{array}\right] .
$$

are the real valued solutions. There are other possible answers here as well.

Problem 5.

Consider the differential equation

$$
y^{\prime \prime}-x y^{\prime}-y=0
$$

whose solutions are power series in x centered at $x_{0}=0$.
(i) Find the recurrence relation between the coefficients of the power series y.
(ii) Write down the first three non-zero terms in each of the two linearly independent solutions.
(iii) Express the solution involving only even powers of x in closed form. The final answer should be a familiar exponential. You may need to recall the series expansion

$$
e^{y}=1+y+\frac{y^{2}}{2!}+\frac{y^{3}}{3!}+\ldots+\frac{y^{n}}{n!}+\ldots
$$

Answer:

(i) We write

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

We compute

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1} \Longrightarrow x y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n}=\sum_{n=0}^{\infty} n a_{n} x^{n}
$$

where in the above we used that the term corresponding to $n=0$ is in fact zero $n a_{n}=0$ for $n=0$. In addition,

$$
y^{\prime \prime}=\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}=\sum_{n=0}^{\infty} a_{n+2}(n+2)(n+1) x^{n}
$$

where the shift $n \rightarrow n+2$ was done in the last step. Thus

$$
\begin{aligned}
y^{\prime \prime}-x y^{\prime}-y & =\sum_{n=0}^{\infty} a_{n+2}(n+1)(n+2) x^{n}-\sum_{n=0}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left[a_{n+2}(n+1)(n+2)-n a_{n}-a_{n}\right] \cdot x^{n} \\
& =\sum_{n=0}^{\infty}\left[a_{n+2}(n+1)(n+2)-a_{n}(n+1)\right] \cdot x^{n}
\end{aligned}
$$

Since $y^{\prime \prime}-x y^{\prime}-y=0$ we conclude

$$
a_{n+2}(n+1)(n+2)-a_{n}(n+1)=0 \Longrightarrow a_{n+2}(n+2)-a_{n}=0
$$

for all n.
(ii) We write down the first coefficients of the even solution by using $n=0, n=2$. We find

$$
\begin{gathered}
2 a_{2}-a_{0}=0 \Longrightarrow a_{2}=\frac{a_{0}}{2} \\
4 a_{4}-a_{2}=0 \Longrightarrow a_{4}=\frac{a_{2}}{4}=\frac{a_{0}}{2 \cdot 4} .
\end{gathered}
$$

The even solution is

$$
\begin{gathered}
y^{\text {even }}=a_{0}+a_{2} x^{2}+a_{4} x^{4}+\ldots=a_{0}+\frac{a_{0}}{2} x^{2}+\frac{a_{0}}{2 \cdot 4} x^{4}+\ldots \\
=a_{0}\left(1+\frac{x^{2}}{2}+\frac{x^{4}}{2 \cdot 4}+\ldots\right)
\end{gathered}
$$

Here we can even set $a_{0}=1$ if we wish to find an answer without any undetermined constants.
For the odd solution we use $n=1$ and $n=3$ to find

$$
\begin{gathered}
3 a_{3}-a_{1}=0 \Longrightarrow a_{3}=\frac{a_{1}}{3} \\
5 a_{5}-a_{3}=0 \Longrightarrow a_{5}=\frac{a_{3}}{5}=\frac{a_{1}}{3 \cdot 5} .
\end{gathered}
$$

This yields

$$
y^{o d d}=a_{1} x+a_{3} x^{3}+a_{5} x^{5}+\ldots=a_{1}\left(x+\frac{1}{3} x^{3}+\frac{1}{3 \cdot 5} x^{5}+\ldots\right)
$$

Again, we could use $a_{1}=1$ if we wish to find an answer without any undetermined constants.
(iii) We wish to first the pattern for the even solution. If we continue further with $n=4$ we find

$$
6 a_{6}-a_{4}=0 \Longrightarrow a_{6}=\frac{a_{4}}{6}=\frac{a_{0}}{2 \cdot 4 \cdot 6}
$$

while $n=6$ yields

$$
8 a_{8}-a_{6}=0 \Longrightarrow a_{8}=\frac{a_{6}}{8}=\frac{a_{0}}{2 \cdot 4 \cdot 6 \cdot 8}
$$

The pattern is now clear

$$
a_{2 k}=\frac{a_{0}}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot(2 k)}=\frac{a_{0}}{2^{k} \cdot(1 \cdot 2 \cdots \ldots \cdot k)}=\frac{a_{0}}{2^{k} k!} .
$$

Let us set $a_{0}=1$ since we wish to speak about a specific even solution (which is only unique up to scaling). Then

$$
a_{2 k}=\frac{1}{2^{k} k!}
$$

and

$$
y^{e v e n}=\sum_{k=0}^{\infty} a_{2 k} x^{2 k}=\sum_{k=0}^{\infty} \frac{1}{2^{k} k!} x^{2 k}=\sum_{k=0}^{\infty} \frac{1}{k!} \cdot\left(\frac{x^{2}}{2}\right)^{k}=e^{\frac{x^{2}}{2}}
$$

Problem 6.

Consider the function

$$
h(t)= \begin{cases}0 & t<1 \\ t^{2} & 1 \leq t<2 \\ t^{2}+t-2 & t \geq 2\end{cases}
$$

(i) Express h in terms of unit step functions.
(ii) Find the Laplace transform of h. You may leave your answer as a sum of fractions.

Answer:

(i) We have $h(t)=t^{2} u_{1}(t)+(t-2) u_{2}(t)$.
(ii) We use that

$$
f(t-c) u_{c}(t) \mapsto e^{-c s} F(s)
$$

In our case, the second term is a direct application (taking $c=2$ and $f(t)=t$ so that $F(s)=\frac{1}{s^{2}}$), so

$$
(t-2) u_{2}(t) \mapsto \frac{e^{-2 s}}{s^{2}}
$$

For the first term, we wish to write

$$
t^{2} u_{1}(t)=f(t-1) u_{1}(t)
$$

for some suitable function f in order to apply the formula. This means

$$
f(t-1)=t^{2} \Longrightarrow f(t)=(t+1)^{2}=t^{2}+2 t+1 \Longrightarrow F(s)=\frac{2}{s^{3}}+\frac{2}{s^{2}}+\frac{1}{s} .
$$

We have

$$
t^{2} u_{1}(t)=f(t-1) u_{1}(t) \mapsto e^{-s} F(s)=\frac{2 e^{-s}}{s^{3}}+\frac{2 e^{-s}}{s^{2}}+\frac{e^{-s}}{s}
$$

Therefore

$$
H(s)=\frac{2 e^{-s}}{s^{3}}+\frac{2 e^{-s}}{s^{2}}+\frac{e^{-s}}{s}+\frac{e^{-2 s}}{s^{2}}
$$

Problem 7.

Use Laplace transforms to solve the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}+5 y=e^{-2 t}, y(0)=0, y^{\prime}(0)=1
$$

Answer: We have

$$
\begin{gathered}
y^{\prime \prime} \mapsto s^{2} Y-s y(0)-y^{\prime}(0)=s^{2} Y-1, \\
y^{\prime} \mapsto s Y-y(0)=s Y .
\end{gathered}
$$

The equation to be solved becomes after applying Laplace transform

$$
\begin{gathered}
s^{2} Y-1+2 s Y+5 Y=\frac{1}{s+2} \Longrightarrow\left(s^{2}+2 s+5\right) Y=1+\frac{1}{s+2} \\
\Longrightarrow Y=\frac{1}{s^{2}+2 s+5}+\frac{1}{(s+2)\left(s^{2}+2 s+5\right)}
\end{gathered}
$$

We need to compute the inverse Laplace transforms of the above expression. The first term

$$
\frac{1}{s^{2}+2 s+5}=\frac{1}{(s+1)^{2}+4} \text { has inverse Laplace equal to } \frac{1}{2} \sin 2 t e^{-t}
$$

The second term is more difficult. We use partial fractions to write

$$
\frac{1}{(s+2)\left(s^{2}+2 s+5\right)}=\frac{A}{s+2}+\frac{B s+C}{s^{2}+2 s+5}
$$

Direct computation yields

$$
\begin{gathered}
A\left(s^{2}+2 s+5\right)+(s+2)(B s+C)=1 \Longleftrightarrow s^{2}(A+B)+s(2 A+2 B+C)+5 A+2 C=1 \\
\Longleftrightarrow A+B=0,2 A+2 B+C=0,5 A+2 C=0 \Longleftrightarrow A=\frac{1}{5}, B=-\frac{1}{5}, C=0
\end{gathered}
$$

Thus

$$
\frac{1}{(s+2)\left(s^{2}+2 s+5\right)}=\frac{1}{5}\left(\frac{1}{s+2}-\frac{s}{s^{2}+2 s+5}\right)=\frac{1}{5}\left(\frac{1}{s+2}-\frac{s+1}{(s+1)^{2}+4}+\frac{1}{(s+1)^{2}+4}\right)
$$

The Laplace inverse equals

$$
\frac{1}{5}\left(e^{-2 t}-e^{-t} \cos 2 t+\frac{1}{2} e^{-t} \sin 2 t\right)
$$

Collecting all terms

$$
y(t)=\frac{1}{2} \sin 2 t e^{-t}+\frac{1}{5}\left(e^{-2 t}-e^{-t} \cos 2 t+\frac{1}{2} e^{-t} \sin 2 t\right)
$$

or simplifying

$$
y(t)=\frac{e^{-2 t}}{5}+\frac{3}{5} e^{-t} \sin 2 t-\frac{1}{5} e^{-t} \cos 2 t
$$

Problem 8.

Consider the forcing function

$$
h(t)=u_{\pi}(t)-u_{4 \pi}(t)
$$

(i) Solve the following initial value problem using Laplace transform

$$
y^{\prime \prime}+y=h(t), y(0)=y^{\prime}(0)=0
$$

(ii) Write your solution $y(t)$ explicitly over each of the three intervals

$$
0 \leq t<\pi, \quad \pi \leq t<4 \pi, \quad 4 \pi \leq t<\infty
$$

(iii) Draw the graph of the solution you found in (i).

Answer:

(i) Using the Laplace of $u_{c}(t) \mapsto \frac{e^{-c s}}{s}$, we compute

$$
H(s)=\frac{e^{-s \pi}}{s}-\frac{e^{-4 \pi s}}{s}
$$

The Laplace transform of the differential equation becomes

$$
s^{2} Y+Y=H(s) \Longrightarrow Y=\frac{H(s)}{s^{2}+1}=\frac{e^{-\pi s}-e^{-4 \pi s}}{s\left(s^{2}+1\right)}
$$

We need to find the inverse Laplace transform of this last expression. We first decompose into partial fractions

$$
F(s)=\frac{1}{s\left(s^{2}+1\right)}=\frac{1}{s}-\frac{s}{s^{2}+1}
$$

This is the Laplace transform of the function

$$
f(t)=1-\cos t
$$

Using that $e^{c s} F(s)$ has Laplace inverse $u_{c}(t) f(t-c)$ we have

$$
\begin{gathered}
Y=e^{-\pi s} F(s)-e^{-4 \pi s} F(s) \Longrightarrow y=u_{\pi}(t) f(t-\pi)-u_{4 \pi}(t) f(t-4 \pi) \\
\Longrightarrow y=u_{\pi}(t)(1-\cos (t-\pi))-u_{4 \pi}(t)(1-\cos (t-4 \pi))
\end{gathered}
$$

Using periodicity this can be further simplified to

$$
y=u_{\pi}(t)(1+\cos t)-u_{4 \pi}(1-\cos t)
$$

(ii) -For $t<\pi$ we have $u_{\pi}(t)=u_{4 \pi}(t)=0$ so $y=0$

- For $\pi \leq t<4 \pi$ we have $u_{\pi}(t)=1$ but $u_{4 \pi}(t)=0$ so $y=1+\cos t$
- Finally for $t>4 \pi$ we have $u_{\pi}(t)=u_{4 \pi}(t)=1$ so $y=1+\cos t-(1-\cos t)=2 \cos t$.

Thus

$$
y(t)= \begin{cases}0 & \text { if } t<\pi \\ 1+\cos t & \text { if } \pi \leq t<4 \pi \\ 2 \cos t & \text { if } t \geq 4 \pi\end{cases}
$$

