Math 20D - Fall 2011 - Final Exam

Problem 1.

A population y(t) of turtles is growing on an island according to the logistic equation with harvesting
d
d—? = (600 — 1) — 50,000, 5(0) = yo > 0.
(i) Find the critical solutions, indicate their type, draw the phase line and sketch the graphs of some
solutions.
(ii) Assume that at time ¢ = 0 there are 200 turtles on the island. How many turtles will there be on

the island in the long run?

Answer:
(i) We find the critical points

d
dit/ = y(600 — y) — 50,000 = (—y + 100)(y — 500) = 0 = y = 100 and y = 500.

The parabola y(600 — y) — 50,000 is concave, so the signs are negative for y < 100, positive for
100 < y < 500 and negative for y > 500. In particular, the function y is decreasing for y < 100,
increasing for 100 < y < 500 and decreasing for y > 500. Drawing the phase line and sketching some
of the solutions, we see that y = 100 repels solutions hence it is an unstable critical point. On the
other hand y = 500 attracts solutions, hence y = 500 is a stable critical point.

(ii) Since y(0) = 200 which falls in the interval (100,500), it follows that the solution converges to the

stable critical point
tlirgo y(t) = 500.



Problem 2.

Consider the inhomogeneous differential equation
(%) 2%y — 2y +y=axlnz, for x> 0.
This problem has three main parts (A), (B), (C), all independent of each other.

(A.) Check that y; = « is a solution to the homogeneous differential equation. We now proceed to find a
second solution y, to the homogeneous equation.
(B.1) Show that for any fundamental pair of solutions (y1,y2) to the homogeneous equation we must have
W (y1,y2) = Cz for some constant C' # 0.
(B.2) Set y; = x. Consider a second solution y, to the the homogeneous equation satisfying the initial
values
y2(1) =0, y5(1) = 1.
Show that W (y1,y2) = x.
(B.3) Use part (B.2) to show that the solution y» must satisfy

TYH — Yo = T.
(B.4) Use (B3) to find a second solution ys.
(C) Using the solutions
y1 =z and yo = xlnx
to the homogeneous equation, find the general solution to the inhomogeneous equation (x) by vari-

ation of parameters.

Answer:

(A) We verify that y; = x is a solution by computing y; = 1,y{ = 0. Direct computation then shows that
the differential equation is verified

2y —ayl +y1 =0.

(B1) This follows by Abel’s theorem. We first bring the equation in standard form

/

1 1
y/ - —y+ Y= 0.
T T
Abel’s theorem states that
1
W(y1,y2) = Cexp (/ p da:) =Cexp(lnz) =Cx

as needed.

(B2) We compute
Y1 Y2

/

Y Ys

T Y2
Ly

= myé - Y.

W(y1,y2) =

Evaluating at x = 1 we find

W(y1,y2)(1) =1- y’z(l) —y2(l) =




using the initial conditions y2(1) = 0,y4(1) = 1. Since we already showed in (B1) that W (y1,y2) =

Cz it follows
Wi(y,y2)(1) =C-1=C

from where C =1 by comparing with the preceding equation. Thus W (y1,ya) = x.
(B3) We showed in part (B2) that
W(y1,y2) = 2y — y2 and W(y1,92) ==
from where the conclusion follows.

(B4) To find yo we use integrating factors. We first write the equation xyh — yo = = in standard form

1
/
— —yy = 1.
Y2 xy2

1L = exp (-/i) — exp(—Ing) = é

Multiplying both sides by the integrating factor we find

The integrating factor is

1\ 1 1
<y2) =— = —ypp=lher+K = yp=zhaor+ Kz.
X X X

To find the constant K we use the initial value yo(1) = 0 which yields K =0 so that

Yo = xlnx.

(C) We bring the equation to be solved into standard form
1 1 Inx
y// _ 7y/+ —y=—.
x x x

We have computed W (y1,y2) = x above. By variation of parameters a particular solution is

Yp = U1Y1 + U2Y2.

We have
B Inz y , Inz zhz (Inz)® 2 poo 1 3
ul__/$ .de__ P d:]j_—/ . _—/(lna:)-(lnx)dx——g(lnx).
Similarly,
U —/hli Y gy = nz de—/ln—xdx—/(lnx) (hla:)’dac—l(lnas)2
2 r W oz z ; 2 .

A particular solution is found by substituting into the above expression
1 1 1
yp = —=(Inx)® z+ 5(1nx)2 cxlnx = éx(lnx)?’.
The general solution takes the form

1
Y=Yp+Yn =Yp+ciys + c2y2 = 6:17(111 x)?’ +c1x +cozlnz.



Problem 3.

Consider the system & = AT where
-2 -8
A= [ 28 } |
The eigenvalues are Ay = —4 and Ay = —6. (You do not need to check this fact.)
(i) Find a fundamental pair of solutions to the system.

(ii) Draw the trajectories of the general solution. What is the type of the phase portrait you obtained?

)

(iii) Calculate the matrix exponential e?.
)
)

. o - 1
(iv) Solve the initial value problem #(0) = 1
(v) Use variation of parameters to find a particular solution the following inhomogeneous system
12t
=
T =Azx + [ 0 ] .
Answer:
. ) . . -2 -8
(i) We find eigenvectors for the two eigenvalues. Letting A = 1 _g | we compute for the first

etgenvalue

-8 . |4
A+4I{1 _4] - 1[1}.

For the second eigenvalue, we compute
4 -8 N
wew= [ 3] —anfl]

We form the two fundamental solutions
4 2
_ -4t = —6L
SR ]

S S - _at |4 —6t |2
T = C1Z1 + C2T2 = C1€ at L] + coe 6t L] .

8

(ii) The general solution is

6t

When t — —oo, the solutions are of large magnitude and follow the dominant term e~°" in the

direction of the vector E] When tooo, the solutions approach zero, and they follow the dominant

term e~* in the direction [J . The origin is a node sink.

(iii) We have

We find the fundamental matriz

Thus



Substituting we find
QA [4e4t 2 ] _1{ 1 =2 } _
2

T | g4t g6t
(iv) We have

o oar — L[ dem¥ —2e76t _8em4 4 86t 1
r=e€e -To=g 4t 6t 4t 6t | °
2 e —e” —2e * +4e” 1

(v) We compute

We have
()t

_e_
[ dett 2e7 6 (1 et _2ett | 12t
- 67475 676t 2 766)& 46625 0
de~4 e 6t Gtett
= e~ 4t e~ 6t —6tebt

ol [ T v g S i

(& & = 24

B 1 67615 _267615 B 1 6415 _26415
- W 4t 46—4t - .

Thus

8

The integrals were computed via integration by parts. For instance

1 1
/6t66t dt = /t(th)’dt = te% — /e6t dt = teb' — ée“ = (t — 6) et

The second integral is similar

1
/Gte‘” dt:/ét(e“)’dtzé te‘“—/e‘“ dt) =3 (e= L) e
2 2 2 4



Problem 4.

Find two independent real valued solutions of the system

I I B O
xr = _5 3 xZ.

11 } . We compute Tr A =4,det A = 8 so the characteristic polynomial is

-5 3
Modd48=0 = A-2)?+4=0 = A\—2=42i = A=2+2i

Answer: We write A = [

We use only one of the eigenvalues below, say A = 2+ 2i. We find an eigenvector by computing

1—(2+2i) 1 [ 121 T
-5 3(2+2i)}_A_[ -5 121'}:}”_{1%@}‘

Thus a complex valued solution is given by

A—(2+2i)I:A:[

N IVl B S R YOS - 1
T =e [1 + 2@'] = e“"(cos 2t + i sin 2t) [1 n Qi]
2t cos 2t + 1sin 2t ot cos 2t + i sin 2¢
(14 2i)(cos2t +isin2t)| cos 2t — 2sin 2t + i(2 cos 2t + sin 2t) | °

We find the real valued solutions by taking the real and imaginary part of the complex valued solution. We
have
2t in 2¢
uy = 2t [ cos ] oy = e [ sin ] .

cos 2t — 2sin 2t 2 cos 2t 4 sin 2t
are the real valued solutions. There are other possible answers here as well.



Problem 5.

Consider the differential equation
y// _ xy/ _ y — O

whose solutions are power series in x centered at zg = 0.

(i) Find the recurrence relation between the coefficients of the power series y.
(ii) Write down the first three non-zero terms in each of the two linearly independent solutions.
(iii) Express the solution involving only even powers of = in closed form. The final answer should be a
familiar exponential. You may need to recall the series expansion
vy y"

=1yt bttt
3! n!

Answer:
(i) We write
o0
Yy = Z anxn
n=0
We compute

oo oo oo
y = E napr" ! = ay = E na,r" = E nanx"
-1 n=0

n=1

where in the above we used that the term corresponding to n = 0 is in fact zero na, = 0 for n = 0.
In addition,

"= Z anpn(n —1)z" 2 = Z apto(n+2)(n+ 1)z™

n=0
where the shift n — n + 2 was done in the last step. Thus

o0 oo
y"—xy'—y:Zan+2(n+ )(n+2)x Znan —Zanx"
n=0

n=0

[ant2(n+1)(n+2) —na, —ay]-z"

ijx gk

[ant2(n+1)(n+2) —an(n+1)] - =
n=0

Since y"' — xy’ —y = 0 we conclude

ant2(n+1)(n+2)—ap(n+1)=0 = api2(n+2)—a, =0

for all n.
(ii) We write down the first coefficients of the even solution by using n = 0,n = 2. We find
200 —ag =0 = GQZ%
ao

as
day—ag =0 = a4 = — = ——.
a4 as [e7} 4 2.4



The even solution is

a a
ye”e"=a0+a2x2+a4x4—|—...:ao—l——oxz—i——ox‘l—i—...
2 2-4
x2 xt
= 1+—+—+...].
ao< —|—2+2_4—|- )

Here we can even set ag = 1 if we wish to find an answer without any undetermined constants.

For the odd solution we use n =1 and n = 3 to find

aj
3ag —a1 =0 = a3:§

as ay
a5 — =0 = = = = —.
as as ag 5 3.5
This yields
odd 3 5 L3 I 5
Y = a1+ azx” +azx” + ... = a1 x—|—§x —|—ﬁx +...].

Again, we could use ay = 1 if we wish to find an answer without any undetermined constants.

(iii) We wish to first the pattern for the even solution. If we continue further with n =4 we find

_ _as _ a
6ag a4—0:>a6—6 5.4.6

while n = 6 yields

ag ao
8ag —ag =0 = =—=—"\
s e ®T8 T 2.4.6-8
The pattern is now clear
ag Qg ao
Qa = = = .
T4 6. (2k) 2F-(1-2---... k) 2FR!

Let us set ag = 1 since we wish to speak about a specific even solution (which is only unique up to

scaling). Then

and



Problem 6.

Consider the function
0 t<1

h(t) = < t2 1<t<?2
P+t—2 t>2.

(i) Express h in terms of unit step functions.
(ii) Find the Laplace transform of h. You may leave your answer as a sum of fractions.

Answer:

(i) We have h(t) = t2uq(t) + (t — 2)ua(t).
(ii) We use that
ft = uc(t) — e “F(s).

In our case, the second term is a direct application (taking c = 2 and f(t) =t so that F(s) = ), so
6—25
(t — 2)ua(t) — =

For the first term, we wish to write
tPui(t) = f(t = Dua(?)

for some suitable function f in order to apply the formula. This means

fE-1) =t = fO)=@t+1)?=2+2t+1 = F(s):%+§2+§
We have . . .,
2ur(t) = f(t — Dy (t) s e *F(s) = 2273 n % + 68 .
Therefore ,




Problem 7.

Use Laplace transforms to solve the initial value problem

y' + 2y +5y =€, y(0)=0,y/(0) = 1.

Answer: We have
y" s s2Y — sy(0) — o/ (0) = s*Y — 1,
y' — sY —y(0) = sY.
The equation to be solved becomes after applying Laplace transform

1 1
2 2
Y —1+4+2sY +5Y = - 2 5)Y =1
s + 2sY + P (s +2s+5) +s 5

1 1
s24+2s+5 + (s+2)(s?2+25+5)
We need to compute the inverse Laplace transforms of the above expression. The first term
I 1
$24+25+5  (s+1)2+4
The second term is more difficult. We use partial fractions to write
1 A Bs+C

(s+2)(s?+2s+5) s12 2 i2si5

:}Y:

1
has inverse Laplace equal to 3 sin 2tet.

Direct computation yields

A(s? +25+5)+(s+2)(Bs+C) =1 <= s*(A+B)+5(2A+2B+C)+54+2C =1

1 1
<~— A+B=0,2A+2B+C=0,5A4+2C =0 <— AZg,Bz—g7C:O.
Thus

1 101 5 101 s+l 1
(s+2)(s2+25+5) 5\s+2 s24+25+5) 5\s+2 (s+1)2+4 (s+1)24+4)"
The Laplace inverse equals
1 1
3 (e_Qt — e tcos2t + ge_t sin Qt) .

Collecting all terms

1 1 1
y(t) = 3 sin 2te”t + 5 <€_2t — e tcos2t + §e_t sin 2t>

or simplifying 0
- 3 1
y(t) = eT + ge_t sin 2t — 5e_t cos 2t.



Problem 8.

Consider the forcing function
h(t) = ux(t) — uar(t).
(i) Solve the following initial value problem using Laplace transform
y"+y=nh(t), y(0)=y'(0) =0.
(ii) Write your solution y(t) explicitly over each of the three intervals
0<t<m, 7w<t<dm 4dr<t< oo

(iii) Draw the graph of the solution you found in (i).

Answer:

(i) Using the Laplace of uc(t) — “— we compute

S

The Laplace transform of the differential equation becomes
H(S) _ e~ TS 6—4775
241 s(s2+1)

We need to find the inverse Laplace transform of this last expression. We first decompose into partial

SY+Y =H(s) = Y =

fractions

1 1 s
Fis)= == >
() s(s2+1) s 241

This is the Laplace transform of the function
f(t) =1 —cost.
Using that e®®F(s) has Laplace inverse u.(t) f(t — ¢) we have
Y =e ™F(s) —e ™ F(s) = y=ur(t)f(t —7) — usr(t) f(t — 47)
= y = u(t)(1 —cos(t — 7)) — uar(t)(1 — cos(t — 4r)).
Using periodicity this can be further simplified to
y = ur(t)(1 4 cost) — ugr (1 — cost).

(i) — Fort<m we have ur(t) = usr(t) =0 so y =0
— Form <t < 4m we have ur(t) =1 but usr(t) =0 so y =1+ cost
— Finally for t > 4w we have ur(t) = uar(t) =1 so y =1+ cost — (1 — cost) = 2cost.

Thus
0 ift<m

yt)=q1+cost ifm<t<dr.
2cost ift > 4r



