Instructions

1. Write your Name and PID on the front of your Blue Book.
2. No calculators or other electronic devices are allowed during this exam.
3. You may use a double sided page of notes.
4. Write your solutions clearly in your Blue Book.
(a) Carefully indicate the number and letter of each question and question part.
(b) Present your answers in the same order as they appear in the exam.
(c) Start each numbered problem on a new side of a page.
5. Show all of your work and justify all your claims. No credit will be given for unsupported answers, even if correct.

Complete 5 out of the 6 questions

1. (10 points) Solve the initial value problem

$$
\begin{equation*}
x^{2} y^{\prime \prime}(x)=5 x y^{\prime}(x)-13 y(x), \quad y(-1)=1, \quad y^{\prime}(-1)=-1 \tag{1}
\end{equation*}
$$

Solution. Rearrange (1) into standard form:

$$
x^{2} y^{\prime \prime}(x)=5 x y^{\prime}(x)-13 y(x) \Longrightarrow x^{2} y^{\prime \prime}(x)-5 x y^{\prime}(x)+13 y(x)=0
$$

The characteristic equation of a Cauchy-Euler equation $a t^{2} y^{\prime \prime}+b t y^{\prime}+c y=0$ is given by $a r^{2}+(b-a) r+c=0$, so in this case:

$$
r^{2}-6 r+13=0
$$

Complex conjugate solutions $r=3 \pm 2 i$
Solutions to Cauchy-Euler equations are either valid for $t>0$ or for $t<0$
The general solution to a Cauchy-Euler equation with complex conjugate roots $\alpha \pm i \beta$ is given by:

$$
y(t)=c_{1} t^{\alpha} \cos (\beta \ln t)+c_{2} t^{\alpha} \sin (\beta \ln t) \quad \text { for } \mathbf{t}>\mathbf{0}
$$

and by

$$
y(t)=c_{1}(-t)^{\alpha} \cos (\beta \ln (-t))+c_{2}(-t)^{\alpha} \sin (\beta \ln (-t)) \quad \text { for } \mathbf{t}<\mathbf{0}
$$

In our case $\alpha=3, \beta=2$, and initial conditions are given at $t=-1<0$, so $y(t)$ has the form:

$$
\begin{align*}
y(t) & =c_{1}(-t)^{3} \cos (2 \ln (-t))+c_{2}(-t)^{3} \sin (2 \ln (-t)) \\
& =d_{1} t^{3} \cos (2 \ln (-t))+d_{2} t^{3} \sin (2 \ln (-t)) \tag{2}
\end{align*}
$$

(renamed $d_{1}=-c_{1}$ and $d_{2}=-c_{2}$ above)
We determine the constants d_{1} and d_{2} by applying the initial conditions. First (to use $y^{\prime}(-1)=$ -1) we will need to differentiate $y(t)$

Application of the chain rule gives

$$
\begin{aligned}
& \frac{d}{d t}(\cos (2 \ln (-t)))=-\sin (2 \ln (-t)) \cdot \frac{2}{-t} \cdot-1=-\frac{2 \sin (2 \ln (-t))}{t} \\
& \frac{d}{d t}(\sin (2 \ln (-t)))=\cos (2 \ln (-t)) \cdot \frac{2}{-t} \cdot-1=\frac{2 \cos (2 \ln (-t))}{t}
\end{aligned}
$$

In particular

$$
\begin{align*}
y^{\prime}(t) & =d_{1}\left(3 t^{2} \cos (2 \ln (-t))+t^{3}\left(-\frac{2 \sin (2 \ln (-t))}{t}\right)\right) \\
& +d_{2}\left(3 t^{2} \sin (2 \ln (-t))+t^{3}\left(\frac{2 \cos (2 \ln (-t))}{t}\right)\right) \tag{3}\\
& =d_{1} t^{2}(3 \cos (2 \ln (-t))-2 \sin (2 \ln (-t))) d_{2} t^{2}(3 \sin (2 \ln (-t))+2 \cos (2 \ln (-t)))
\end{align*}
$$

Substituting $t=-1$ into (2) and (3) and applying the initial conditions we get:

$$
\begin{aligned}
1=y(-1) & =-d_{1} \cos (2 \ln (1))-d_{2} \sin (2 \ln (1)) \\
-1=y^{\prime}(-1) & =d_{1}(3 \cos (2 \ln (1))-2 \sin (2 \ln (1)))+d_{2}(3 \sin (2 \ln (1))+2 \cos (2 \ln (1)))
\end{aligned}
$$

Simplifying:

$$
\begin{aligned}
1 & =-d_{1} \Longrightarrow d_{1}=-1 \\
-1 & =3 d_{1}+2 d_{2} \Longrightarrow d_{2}=1
\end{aligned}
$$

So the solution to (1) is:

$$
y(t)=-t^{3} \cos (2 \ln (-t))+t^{3} \sin (2 \ln (-t))
$$

2. (10 points) Find the general solution to the following differential equation

$$
\begin{equation*}
y^{\prime \prime}+16 y=\tan (4 t) \tag{4}
\end{equation*}
$$

Solution. Notice that we cannot apply the method of undetermined coefficients to $g(t)=$ $\tan (4 t)$, so we proceed by variation of parameters.
First find two linearly independent homogeneous solutions.
Auxiliary equation:

$$
r^{2}+16=0 \Longrightarrow r= \pm 4 i
$$

Two linearly independent solutions:

$$
\begin{aligned}
& y_{1}=\cos (4 t) \\
& y_{2}=\sin (4 t)
\end{aligned}
$$

Given a differential equation $a y^{\prime \prime}+b y^{\prime}+c y=g$ with homogeneous solutions y_{1} and y_{2} a particular solution is given by:

$$
\begin{equation*}
y_{p}(t)=y_{1}(t) v_{1}(t)+y_{2}(t) v_{2}(t) \tag{5}
\end{equation*}
$$

Page 2
where v_{1} and v_{2} can be calculated using the formulae:

$$
\begin{aligned}
& v_{1}(t)=\int \frac{-g y_{2}}{a W\left[y_{1}, y_{2}\right](t)} d t \\
& v_{2}(t)=\int \frac{g y_{1}}{a W\left[y_{1}, y_{2}\right](t)} d t
\end{aligned}
$$

The function on the denominator is the Wronskian of $y_{1}(t)$ and $y_{2}(t)$

$$
W\left[y_{1}, y_{2}\right](t)=\operatorname{det}\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
$$

In our case:

$$
W\left[y_{1}, y_{2}\right](t)=\operatorname{det}\left(\begin{array}{cc}
\cos (4 t) & \sin (4 t) \\
-4 \sin (4 t) & 4 \cos (4 t)
\end{array}\right)=4
$$

And so:

$$
\begin{aligned}
& v_{1}(t)=-\frac{1}{4} \int \tan (4 t) \sin (4 t) d t=-\frac{1}{4} \int \frac{\sin ^{2}(4 t)}{\cos (4 t)} d t \\
& v_{2}(t)=-\frac{1}{4} \int \tan (4 t) \cos (4 t) d t=\frac{1}{4} \int \sin (4 t) d t
\end{aligned}
$$

$v_{1}(t)$ is evaluated by rewriting the numerator $\sin ^{2}(4 t)=1-\cos ^{2}(4 t)$

$$
\begin{aligned}
v_{1}(t) & =-\frac{1}{4} \int \frac{1-\cos ^{2}(4 t)}{\cos (4 t)} d t \\
& =-\frac{1}{4} \int \sec (4 t)-\cos (4 t) d t \\
& =-\frac{1}{4}\left(\frac{1}{4} \ln |\sec (4 t)+\tan (4 t)|-\frac{1}{4} \sin (4 t)\right) \\
& =-\frac{1}{16} \ln |\sec (4 t)+\tan (4 t)|+\frac{1}{16} \sin (4 t)
\end{aligned}
$$

$v_{2}(t)$ is easier

$$
v_{2}(t)=\frac{1}{4} \int \sin (4 t) d t=-\frac{1}{16} \cos (4 t)
$$

Substituting $y_{1}, y_{2}, v_{1}, v_{2}$ into (5) we get:

$$
\begin{aligned}
y_{p} & =\left(-\frac{1}{16} \ln |\sec (4 t)+\tan (4 t)|+\frac{1}{16} \sin (4 t)\right) \cos (4 t)+\left(-\frac{1}{16} \cos (4 t)\right) \sin (4 t) \\
& =-\frac{1}{16} \cos (4 t) \ln |\sec (4 t)+\tan (4 t)|
\end{aligned}
$$

The general solution to (4) is then given by:

$$
\begin{aligned}
y(t) & =y_{h}(t)+y_{p}(t) \\
& =c_{1} \cos (4 t)+c_{2} \sin (4 t)-\frac{1}{16} \cos (4 t) \ln |\sec (4 t)+\tan (4 t)|
\end{aligned}
$$

3. (10 points) Solve the initial value problem

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ccc}
1 & 1 & 0 \tag{6}\\
0 & 2 & 0 \\
0 & -1 & 4
\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\left(\begin{array}{c}
-3 \\
-2 \\
1
\end{array}\right)
$$

Solution. To solve a system of differential equations $\mathbf{x}^{\prime}=A \mathbf{x}$ we calculate the eigenvalues and eigenvectors of A.
Eigenvalues are solutions to the characteristic equation given by:

$$
\operatorname{det}(A-r I)=0
$$

In our case this is

$$
\operatorname{det}\left(\begin{array}{ccc}
1-r & 1 & 0 \\
0 & 2-r & 0 \\
0 & -1 & 4-r
\end{array}\right)=(r-1)(r-2)(r-4)=0 \Longrightarrow r=1,2,4
$$

Calculating eigenvector $\mathbf{u}_{\mathbf{1}}$ associated to eigenvector $r_{1}=1$
We determine $\mathbf{u}_{\mathbf{1}}$ by solving the matrix equation $\left(A-r_{1} I\right) \mathbf{u}_{\mathbf{1}}=\mathbf{0}$, let $\mathbf{u}_{\mathbf{1}}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$
We need to solve:

$$
\left(\begin{array}{ccc}
1-(1) & 1 & 0 \\
0 & 2-(1) & 0 \\
0 & -1 & 4-(1)
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Simplifying this is the matrix equation:

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & -1 & 3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Or equivalently the simultaneous equations:

$$
\begin{aligned}
y & =0 \\
y & =0 \\
-y+3 z & =0
\end{aligned}
$$

Solving these we get $y=z=0$, notice that there are no conditions on x.
This means:

$$
\mathbf{u}_{\mathbf{1}}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x \\
0 \\
0
\end{array}\right)=x\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Any choice of x will give us an eigenvector (except $x=0$), letting $x=1$ we get the eigenvector

$$
\mathbf{u}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Page 4

Similarly one calculates eigenvectors $\mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}$ associated to eigenvalues $r_{2}=2, r_{3}=2$ respectively. You should get:

$$
\mathbf{u}_{\mathbf{2}}=\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right) \quad \text { and } \quad \mathbf{u}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

The general solution to (6) is then given by:

$$
\mathbf{x}(t)=c_{1} e^{t}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+c_{2} e^{2 t}\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right)+c_{3} e^{4 t}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Equivalently this can be written as:

$$
\mathbf{x}(t)=\left(\begin{array}{ccc}
e^{t} & 2 e^{2 t} & 0 \\
0 & 2 e^{2 t} & 0 \\
0 & e^{2 t} & e^{4 t}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

Subtitute $t=0$ and apply the initial condition:

$$
\left(\begin{array}{c}
-3 \\
-2 \\
1
\end{array}\right)=\mathbf{x}(0)=\left(\begin{array}{ccc}
e^{0} & 2 e^{0} & 0 \\
0 & 2 e^{0} & 0 \\
0 & e^{0} & e^{0}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 2 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

Solving

$$
\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 2 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
-3 \\
-2 \\
1
\end{array}\right)
$$

we get

$$
\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right)
$$

The solution to (6) is then given by:

$$
\mathbf{x}(t)=\left(\begin{array}{ccc}
e^{t} & 2 e^{2 t} & 0 \\
0 & 2 e^{2 t} & 0 \\
0 & e^{2 t} & e^{4 t}
\end{array}\right)\left(\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right)=\left(\begin{array}{c}
-e^{t}-2 e^{2 t} \\
-2 e^{2 t} \\
-e^{2 t}+2 e^{4 t}
\end{array}\right)
$$

4. (10 points) Find the general solution to the non-homogeneous system

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
3 & -2 \tag{7}\\
4 & -1
\end{array}\right) \mathbf{x}+\binom{-6 e^{-t}}{-4 e^{-t}}
$$

Solution. This will have two parts.

Calculating homogeneous solution

Proceed as in Question 3 and solve the characteristic equation

$$
\operatorname{det}\left(\begin{array}{cc}
3-r & -2 \\
4 & -1-r
\end{array}\right)=0
$$

which simplifies to $r^{2}-2 r+5=0$. By completing the square or otherwise we get complex conjugate solutions $r=1 \pm 2 i$.
A system of differential equations $\mathbf{x}^{\prime}=A \mathbf{x}$ with complex eigenvalues $\alpha \pm \beta$ and corresponding eigenvectors $\mathbf{a} \pm i \mathbf{b}$ has two linearly independent homogeneous solutions:

$$
\begin{aligned}
& \mathbf{x}_{1}(t)=e^{\alpha t}(\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)) \\
& \mathbf{x}_{2}(t)=e^{\alpha t}(\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t))
\end{aligned}
$$

The general (homogeneous) solution is then given by:

$$
\begin{align*}
\mathbf{x}(t) & =c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t) \\
& =c_{1} e^{\alpha t}(\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t))+c_{2} e^{\alpha t}(\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)) \tag{8}
\end{align*}
$$

We need to determine the complex eigenvector $\mathbf{u}=\mathbf{a}+i \mathbf{b}$ associated to the complex eigenvalue $\alpha+i \beta=1+2 i$ by solving

$$
(A-(1+2 i) I) \mathbf{u}=\mathbf{0}
$$

This is the matrix equation:

$$
\left(\begin{array}{cc}
3-(1+2 i) & -2 \\
4 & -1-(1+2 i)
\end{array}\right)\binom{x}{y}=\binom{0}{0}
$$

Which simplifies to

$$
\left(\begin{array}{cc}
2-2 i & -2 \\
4 & -2-2 i
\end{array}\right)\binom{x}{y}=\binom{0}{0}
$$

Or equivalently:

$$
\begin{aligned}
(2-2 i) x-2 y & =0 \\
4 x+(-2-2 i) y & =0
\end{aligned}
$$

Notice that the second equation here is a scalar multiple of the first (multiply the first line by $1+i$), so we can ignore the second equation (since it won't give us any new information).
Rearranging the first equation:

$$
y=(1-i) x
$$

In particular:

$$
\mathbf{u}=\binom{x}{y}=\binom{x}{(1-i) x}=x\binom{1}{1-i}
$$

Again any choice of x (except 0) gives an eigenvector. Let $x=1$ and separate the real and imaginary components:

$$
\mathbf{u}=\binom{1}{1-i}=\binom{1}{1}+i\binom{0}{-1}=\mathbf{a}+i \mathbf{b}
$$

So

$$
\begin{aligned}
& \mathbf{a}=\binom{1}{1} \\
& \mathbf{b}=\binom{0}{-1}
\end{aligned}
$$

Substituting $\alpha=1, \beta=2, \mathbf{a}=\binom{1}{1}, \mathbf{b}=\binom{0}{-1}$ into (8) we get the general homogeneous solution:

$$
\begin{aligned}
\mathbf{x}_{h}(t) & =c_{1} e^{t}\left(\binom{1}{1} \cos (2 t)-\binom{0}{-1} \sin (2 t)\right)+c_{2} e^{t}\left(\binom{1}{1} \sin (2 t)+\binom{0}{-1} \cos (2 t)\right) \\
& =c_{1} e^{t}\binom{\cos (2 t)}{\cos (2 t)+\sin (2 t)}+c_{2} e^{t}\binom{\sin (2 t)}{\sin (2 t)-\cos (2 t)}
\end{aligned}
$$

Finding a particular solution

Applying the method of undetermined coefficients, we make a guess for the particular solution:

$$
\mathbf{x}_{p}(t)=\mathbf{a} e^{-t}
$$

The idea is to substitute this guess into (7).
First we will need to differentiate:

$$
\mathbf{x}_{p}^{\prime}(t)=-\mathbf{a} e^{-t}
$$

Now substituting $\mathbf{x}_{p}(t)$ and $\mathbf{x}_{p}^{\prime}(t)$ into (7):

$$
-\mathbf{a} e^{-t}=\left(\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right) \mathbf{a} e^{-t}+\binom{-6 e^{-t}}{-4 e^{-t}}
$$

Cancelling e^{-t} :

$$
-\mathbf{a}=\left(\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right) \mathbf{a}+\binom{-6}{-4} \Longrightarrow\left(\begin{array}{cc}
4 & -2 \\
4 & 0
\end{array}\right) \mathbf{a}=\binom{6}{4}
$$

Solving we get:

$$
\mathbf{a}=\binom{1}{-1}
$$

Therefore a particular solution to (7) is given by:

$$
\mathbf{x}(t)=\binom{1}{-1} e^{t}=\binom{e^{t}}{-e^{t}}
$$

And so the general solution to (7) is:

$$
\begin{aligned}
\mathbf{x}(t) & =\mathbf{x}_{h}(t)+\mathbf{x}_{p}(t) \\
& =c_{1} e^{t}\binom{\cos (2 t)}{\cos (2 t)+\sin (2 t)}+c_{2} e^{t}\binom{\sin (2 t)}{\sin (2 t)-\cos (2 t)}+\binom{e^{t}}{-e^{t}}
\end{aligned}
$$

5. (10 points) (a) Verify that

$$
\left\{\binom{1}{1} e^{t},\binom{1}{3} e^{-t}\right\}
$$

is a fundamental solution set to the homogeneous system

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
2 & -1 \tag{9}\\
3 & -2
\end{array}\right) \mathbf{x}
$$

(b) Using variation of parameters, find a particular solution to the non-homogeneous system

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right) \mathbf{x}+\binom{e^{t}}{t}
$$

Solution. (a) Let $A=\left(\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right)$.
To verify that $\left\{\binom{1}{1} e^{t},\binom{1}{3} e^{-t}\right\}$ is a fundamental solution set we need to check that:
(1) $\binom{1}{1} e^{t}$ and $\binom{1}{3} e^{-t}$ are solutions to (9)
(2) $\binom{1}{1} e^{t}$ and $\binom{1}{3} e^{-t}$ are linearly independent.

We can check both simultaneously by forming a matrix X with columns $\binom{1}{1} e^{t}$ and $\binom{1}{3} e^{-t}$

$$
X=\left(\begin{array}{cc}
e^{t} & e^{-t} \\
e^{t} & 3 e^{-t}
\end{array}\right)
$$

and verifying:
(1) $X^{\prime}=A X$ (this shows the columns of X are solutions)
(2) $\operatorname{det}(X)=0$ (this shows that the columns of X are linearly independent)

Checking (1)

Calculate:

$$
\begin{aligned}
X^{\prime} & =\left(\begin{array}{cc}
e^{t} & -e^{-t} \\
e^{t} & -3 e^{-t}
\end{array}\right) \\
A X & =\left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right)\left(\begin{array}{cc}
e^{t} & e^{-t} \\
e^{t} & 3 e^{-t}
\end{array}\right)=\left(\begin{array}{cc}
e^{t} & -e^{-t} \\
e^{t} & -3 e^{-t}
\end{array}\right)
\end{aligned}
$$

Checking (2)

$$
\operatorname{det}(X)=\operatorname{det}\left(\begin{array}{cc}
e^{t} & e^{-t} \\
e^{t} & 3 e^{-t}
\end{array}\right)=3-1=2 \neq 0
$$

(b) We showed in part (a) that X is a fundamental matrix for the system (9).

Variation of parameters is a method for calculating a particular solution \mathbf{x}_{p} to a nonhomogeneous system $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}$

$$
\mathbf{x}_{p}=X \mathbf{v}
$$

where \mathbf{v} is calculated with the formula:

$$
\mathbf{v}=\int X^{-1} \mathbf{f}
$$

Here X^{-1} is the inverse matrix to X

$$
X^{-1}=\frac{1}{\operatorname{det} X}\left(\begin{array}{cc}
3 e^{-t} & -e^{-t} \\
-e^{t} & e^{t}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
3 e^{-t} & -e^{-t} \\
-e^{t} & e^{t}
\end{array}\right)
$$

Calculate

$$
X^{-1} \mathbf{f}=\frac{1}{2}\left(\begin{array}{cc}
3 e^{-t} & -e^{-t} \\
-e^{t} & e^{t}
\end{array}\right)\binom{e^{t}}{t}=\frac{1}{2}\binom{3-t e^{-t}}{-e^{2 t}+t e^{t}}
$$

Integrate to get \mathbf{v} :

$$
\mathbf{v}=\int \frac{1}{2}\binom{3-t e^{-t}}{-e^{2 t}+t e^{t}}
$$

To deal with both $\int t e^{ \pm t}$ together you can calculate:

$$
\int t e^{\lambda t}=\frac{t e^{\lambda t}}{\lambda}-\frac{1}{\lambda^{2}} e^{\lambda t}
$$

Applying above formula for $\lambda=1,-1$

$$
\begin{aligned}
\int t e^{t} & =t e^{t}-e^{t} \\
\int t e^{-t} & =-t e^{-t}-e^{-t}
\end{aligned}
$$

So

$$
\begin{aligned}
\mathbf{v} & =\int\binom{\frac{3}{2}-\frac{1}{2} t e^{-t}}{-\frac{1}{2} e^{2 t}+\frac{1}{2} t e^{t}} \\
& =\binom{\frac{3}{2} t-\frac{1}{2}\left(-t e^{-t}-e^{-t}\right)}{-\frac{1}{4} e^{2 t}+\frac{1}{2}\left(t e^{t}-e^{t}\right)} \\
& =\binom{\frac{3}{2} t+\frac{1}{2} t e^{-t}+\frac{1}{2} e^{-t}}{-\frac{1}{4} 2 e^{2 t}+\frac{1}{2} t e^{t}-\frac{1}{2} e^{t}}
\end{aligned}
$$

Finally

$$
\begin{aligned}
\mathbf{x}_{p} & =X \mathbf{v} \\
& =\left(\begin{array}{cc}
e^{t} & e^{-t} \\
e^{t} & 3 e^{-t}
\end{array}\right)\binom{\frac{3}{2} t+\frac{1}{2} t e^{-t}+\frac{1}{2} e^{-t}}{-\frac{1}{4} e^{2 t}+\frac{1}{2} t e^{t}-\frac{1}{2} e^{t}}
\end{aligned}
$$

Separate calculation into components for clarity

The first component \mathbf{x}_{p} is:

$$
\begin{aligned}
& =e^{t}\left(\frac{3}{2} t+\frac{1}{2} t e^{-t}+\frac{1}{2} e^{-t}\right)+e^{-t}\left(-\frac{1}{4} e^{2 t}+\frac{1}{2} t e^{t}-\frac{1}{2} e^{t}\right) \\
& =\frac{3}{2} t e^{t}-\frac{1}{4} e^{t}+t
\end{aligned}
$$

The second component \mathbf{x}_{p} is:

$$
\begin{aligned}
& =e^{t}\left(\frac{3}{2} t+\frac{1}{2} t e^{-t}+\frac{1}{2} e^{-t}\right)+3 e^{-t}\left(-\frac{1}{4} e^{2 t}+\frac{1}{2} t e^{t}-\frac{1}{2} e^{t}\right) \\
& =\frac{3}{2} t e^{t}-\frac{3}{4} e^{t}+2 t-1
\end{aligned}
$$

So finally

$$
\mathbf{x}_{p}=\frac{1}{4}\binom{6 t e^{t}-e^{t}+4 t}{6 t e^{t}-3 e^{t}+8 t-4}
$$

6. (10 points) Find a fundamental matrix for the system

$$
\mathbf{x}^{\prime}=\left(\begin{array}{lll}
0 & 1 & 4 \tag{10}\\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) \mathbf{x}
$$

Solution. It is a general fact that a fundamental matrix to any system of differential equations $\mathrm{x}^{\prime}=A \mathbf{x}$ is given by the matrix $e^{A t}$. By definition:

$$
e^{A t}:=I+A t+A^{2} \frac{t^{2}}{2!}+A^{3} \frac{t^{3}}{3!}+\cdots
$$

In general it is hard to calculate $e^{A t}$ (this is why we normally find generalized eigenvalues \mathbf{u} and calculate $e^{A t} \mathbf{u}$ with a different formula!).
However here if one notices that the coefficient matrix above (which we will call A) is nilpotent, meaning $A^{k}=0$ for some k, then it is actually possible to calculate $e^{A t}$ directly.

Observe:

$$
\begin{aligned}
A & =\left(\begin{array}{lll}
0 & 1 & 4 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) \\
A^{2} & =\left(\begin{array}{lll}
0 & 0 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
A^{3} & =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

So $A^{3}=0$, and therefore A^{4}, A^{5}, \cdots and all higher powers are also all 0 . In particular:

$$
\begin{aligned}
e^{A t} & =I+A t+A^{2} \frac{t^{2}}{2!}+(0+\cdots) \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{lll}
0 & 1 & 4 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) t+\left(\begin{array}{lll}
0 & 0 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \frac{t^{2}}{2} \\
& =\left(\begin{array}{ccc}
1 & t & 4 t+t^{2} \\
0 & 1 & 2 t \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

This is a fundamental matrix to (10).

