
Math 20D - Spring 2017 - Final Exam

Problem 1.

Using undetermined coefficients, find the general solution of the differential equation

y′′ − 2y′ = e2t − 4t.

Solution:The homogeneous equation y′′ − 2y′ = 0 has characteristic equation r2 − 2r = 0 which gives

r = 0 and r = 2. Thus, a fundamental pair of solutions for the homogeneous equation is given by

y1 = e0·t = 1, y2 = e2t.

The homogeneous solution is

yh = c1 + c2e
2t.

For the particular solution, we seek

yp = Ate2t + (Bt2 + Ct+D).

The presence of te2t is motivated by the fact that we need not replicate any of the homogeneous solutions.

Similarly, the degree of the polynomial part of the solution is seen to be 2 because of the presence of y′ and

the term t in the answer. We have

y′p = A(2t+ 1)e2t + (2Bt+ C)

y′′p = A(4t+ 4)e2t + 2B.

Therefore

y′′p − 2y′p =
(
A(4t+ 4)e2t + 2B

)
− 2

(
(2t+ 1)e2t + (2Bt+ C)

)
= 2Ae2t + (−4Bt+ 2B − C) = e2t − 4t.

This gives

2A = 1,−4B = −4, 2B − 2C = 0.

Thus

A =
1

2
, B = 1, C = 1 =⇒ yp =

1

2
te2t + t2 + t.

We chose here D = 0 since we need only one particular solution. The general solution is found by superim-

posing

y = yp + c1y1 + c2y2 =
1

2
te2t + t2 + t+ c1 + c2e

2t.



Problem 2.

Using integrating factors, find the general solution of the differential equation

ty′ = t cos t4 − 3y.

Solution:We first write the equation in standard form

ty′ = t cos t4 − 3y =⇒ ty′ + 3y = t cos t4 =⇒ y′ +
3

t
y = cos t4.

The integrating factor is

u = exp

(∫
3

t
dt

)
= exp(3 ln t) = t3.

Multiplying by the integrating factor throughout we find

(t3y)′ = t3 cos t4 =⇒ t3y =

∫
t3 cos t4 dt =

1

4
sin t4 + C.

This gives

y =
1

4t3
sin t4 +

C

t3
.



Problem 3.

Consider the differential equation

x2y′′ − 2xy′ + (2− x2)y = x3ex.

(i) Find the values of r for which y = xerx is a solution to the homogeneous equation.

(ii) Using variation of parameters, find a particular solution to the inhomogeneous equation.

Solution:

(i) If y = xerx then direct computation shows

y′ = (rx+ 1)erx, y′′ = (r2x+ 2r)erx.

Thus

x2y′′ − 2xy′ + (2− x2)y = erx ·
(
x2(r2x+ 2r)− 2x(rx+ 1) + (2− x2)x

)
= erx(r2x3 − x3) = erxx3(r2 − 1).

For the homogeneous equation, the last expression should be 0 for all x, hence r2− 1 = 0 so r = ±1.

The two solutions are

y1 = xex, y2 = xe−x.

(ii) We look for a particular solution

yp = u1y1 + u2y2.

First, we bring the equation into standard form

y′′ − 2

x
· y′ + 2− x2

x2
· y = xex.

We have

W (y1, y2) =

∣∣∣∣ xex xe−x

(x+ 1)ex (−x+ 1)e−x

∣∣∣∣ = xex · (−x+ 1)e−x − xex · (x+ 1)e−x = −2x2.

By variation of parameters, we have

u1 = −
∫

xex

−2x2
· (xe−x) dx =

∫
1

2
dx =

x

2
,

u2 =

∫
xex

−2x2
· (xex) dx =

∫
−1

2
e2x dx = −1

4
e2x.

Then

yp =
x

2
· (xex)− 1

4
e2x · (xe−x) =

x2

2
ex − 1

4
xex.



Problem 4.

Consider the system ~x′ = A~x where

A =

[
1 2
−2 5

]
.

(i) Find a fundamental pair of solutions to the system.

(ii) Draw the trajectories of the general solution. What is the type of the phase portrait you obtained?

(iii) Calculate the normalized fundamental matrix Φ(t) with Φ(0) = I.

(iv) Solve the initial value problem ~x(0) =

[
1
0

]
.

(v) Use variation of parameters to find a particular solution the following inhomogeneous system

~x′ = Ax+

[
te3t

0

]
.

Solution:

(i) We find Tr A = 6,detA = 9. The eigenvalues are roots of the characteristic polynomial

λ2 − 6λ+ 9 = 0 =⇒ λ = 3.

This is a repeated eigenvalue and the matrix is defective. We find the eigenvector by computing

A− 3I =

[
−2 2
−2 2

]
.

Thus

(A− 3I)~v = 0 =⇒ ~v =

[
1
1

]
.

Thus

~x1 = e3t
[
1
1

]
.

We find a generalized eigenvector by solving

(A− 3I)~w = ~v =⇒
[
−2 2
−2 2

]
~w =

[
1
1

]
=⇒ ~w =

[
−1/2

0

]
.

Other choices for ~v, ~w are possible here. We have

~x2 = e3t
(
t

[
1
1

]
+

[
−1/2

0

])
.

(ii) The general solution is found by superimposing the two solutions found above

~x = c1e
3t

[
1
1

]
+ c2e

3t

(
t

[
1
1

]
+

[
−1/2

0

])
.

The trajectory is an improper node source. The dominant term is e3tt

[
1
1

]
and solutions follow the

direction

[
1
1

]
both when t→ −∞ and when t→∞. To determine the direction of the trajectory, we

need to compute the velocity vector at one point. For instance, we can pick

~x(0) =

[
1
0

]
=⇒ ~x′(0) = A~x(0) =

[
1 2
−2 5

]
·
[
1
0

]
=

[
1
−2

]
.



This vector points down. Since the trajectories diverge away from the origin, in order to match the

direction of the velocity vector, the trajectories must move clockwise.

(iii) We have

Ψ(t) =

[
e3t e3t(t− 1/2)
e3t e3tt

]
.

Note that

Ψ(0) =

[
1 −1/2
1 0

]
=⇒ Ψ(0)−1 =

1

1/2

[
0 1/2
−1 1

]
=

[
0 1
2 −2

]
.

Thus

Φ(t) = Ψ(t) ·Ψ(0)−1 =

[
e3t e3t(t− 1/2)
e3t e3tt

]
·
[

0 1
−2 2

]
=

[
(1− 2t)e3t 2te3t

−2te3t (1 + 2t)e3t

]
.

(iv) We have

~x = Φ(t)~x(0) =

[
(1− 2t)e3t 2te3t

−2te3t (1 + 2t)e3t

]
·
[

1
0

]
=

[
(1− 2t)e3t

−2te3t

]
.

(v) We have

~xp = Ψ(t)

∫
Ψ(t)−1

[
te3t

0

]
dt.

We compute det Ψ(t) = e6t/2 so that

Ψ(t)−1 =
1

e6t/2

[
te3t −e3t(t− 1/2)
−e3t e3t

]
.

Then

Ψ(t)−1
[
t2e3t

0

]
=

1

e6t/2

[
te3t −e3t(t− 1/2)
−e3t e3t

] [
te3t

0

]
=

2

e6t

[
t2e6t

−te6t
]

=

[
2t2

−2t

]
.

Substituting, we obtain

~xp =

[
e3t e3t(t− 1/2)
e3t e3tt

] ∫ [
2t2

−2t

]
dt =

[
e3t e3t(t− 1/2)
e3t e3tt

] [
2t3/3
−t2

]
= e3t

[
2t3/3− t2(t− 1/2)

2t3/3− t2 · t

]
.

Thus

~xp = e3t
[
−t3/3 + t2/2
−t3/3

]
.



Problem 5.

Consider the differential equation

y′′ − 3xy′ − 3y = 0 with initial conditions y(0) = 1, y′(0) = 0

whose solution is written as a power series

y = a0 + a1x+ a2x
2 + . . . .

(i) Using the initial conditions, calculate the coefficients a0 and a1.

(ii) Find the recurrence relation between the coefficients of the power series y.

(iii) Write down the first four non-zero terms of the solution. Is the solution even or odd?

(iv) Write down the general expression for the non-zero coefficients. Express the solution y in closed

form. The final answer should be a familiar function. You may need to recall the series expansion

ew = 1 + w +
w2

2!
+
w3

3!
+ . . .+

wn

n!
+ . . . .

Solution:

(i) Substituting x = 0 we obtain

y(0) = a0 = 1

and computing derivatives we find

y′(0) = a1 = 0.

Thus a0 = 1, a1 = 0.

(ii) We have y =
∑∞

n=0 anx
n which gives

y′ =

∞∑
n=1

nanx
n−1 =⇒ xy′ =

∞∑
n=1

nanx
n =

∞∑
n=0

nanx
n,

where we reinserted the term n = 0 since the expression above covers this case as well. Next,

y′′ =
∑
n=2

n(n− 1)anx
n−2 =

∞∑
n=0

(n+ 1)(n+ 2)an+2x
n.

Thus

y′′−3xy′−3y =

∞∑
n=0

(n+1)(n+2)an+2x
n−3

∞∑
n=0

nanx
n−3

∞∑
n=0

anx
n =

∞∑
n=0

((n+ 1)(n+ 2)an+2 − (3n+ 3)an)xn = 0.

Therefore

(n+ 1)(n+ 2)an+2 − (3n+ 3)an = 0 =⇒ an+2 =
3(n+ 1)

(n+ 1)(n+ 2)
an =⇒ an+2 =

3

n+ 2
an.

(iii) We have a1 = 0. The above recursions works in steps of 2, so an = 0 for all n odd. Thus the solution

only has even terms, hence y is even.

We use the recurrence for n = 0, 2, 4, 6 to find

a0 = 1, a2 =
3

2
a0 =

3

2



a4 =
3

4
a2 =⇒ a4 =

3

4
· 3

2

a6 =
3

6
· a4 =⇒ a6 =

3

6
· 3

4
· 3

2
.

Thus

y = 1 +
3

2
x2 +

3

4
· 3

2
x4 +

3

6
· 3

4
· 3

2
x6 + . . . .

(iv) The general even term is

a2n =
3

2n
· 3

(2n− 2)
· . . . · 3

2
=

3n

(2n)(2n− 2) · . . . · 2
=

3n

2nn!
.

Thus

y =

∞∑
n=0

3n

2nn!
x2n =

∞∑
n=0

1

n!

(
3x2

2

)n

= exp

(
3x2

2

)
.



Problem 6.

Consider the function

h(t) =

{
2t+ t3et 0 ≤ t < 2

t2 + t3et 2 ≤ t.

(i) Express h in terms of unit step functions.

(ii) Find the Laplace transform of h. You may leave your answer as a sum of fractions.

Solution:

(i) We have

h(t) = (2t+ t3et) + (t2 − 2t)u2(t).

(ii) The first term 2t+ t3et has Laplace transform

2

s2
+

6

(s− 1)4
,

where the exponential shift formula was used above. For the second term, we write (t2 − 2t)u2(t) =

f(t− 2)u2(t) where

f(t− 2) = t2 − 2t =⇒ f(t) = (t+ 2)2 − 2(t+ 2) = t2 + 2t =⇒ F (s) =
2

s3
+

2

s2
.

Thus (t2 − 2t)u2(t) = f(t− 2)u2(t) has Laplace transform

e−2s
(

2

s3
+

2

s2

)
.

Thus

H(s) =

(
2

s2
+

6

(s− 1)4

)
+ e−2s

(
2

s3
+

2

s2

)
.



Problem 7.

Use Laplace transforms to solve the initial value problem

y′′ + 4y′ + 5y = 10et, y(0) = 3, y′(0) = −2.

Solution:Using Laplace transform, we find

s2Y − 3s+ 2 + 4(sY − 3) + 5Y =
10

s− 1
.

We solve

(s2 + 4s+ 5)Y = (3s+ 10) +
10

s− 1
=

(3s+ 10)(s− 1) + 10

s− 1
=

3s2 + 7s

s− 1
.

Thus

Y (s) =
3s2 + 7s

(s− 1)(s2 + 4s+ 5)
.

We write this into a sum of partial fractions

3s2 + 7s

(s− 1)(s2 + 4s+ 5)
=

A

s− 1
+

B(s+ 2)

(s+ 2)2 + 1
+

C

(s+ 2)2 + 1
.

We solve for the undetermined coefficients

3s2 + 7s = A(s2 + 4s+ 5) +B(s+ 2)(s− 1) + C(s− 1) = (A+B)s2 + (4A+B + C)s+ (5A− 2B − C)

=⇒ A+B = 3, 4A+B + C = 7, 5A− 2B − C = 0 =⇒ A = 1, B = 2, C = 1.

Thus

Y (s) =
1

s− 1
+

2(s+ 2)

(s+ 2)2 + 1
+

1

(s+ 2)2 + 1

which yields

y(t) = et + 2e−2t cos t+ e−2t sin t.



Problem 8.

Consider the forcing function

h(t) = u1(t) + u2(t).

(i) Solve the following initial value problem using Laplace transform

y′′ − y = h(t), y(0) = y′(0) = 0.

(ii) Write your solution y(t) explicitly over each of the three intervals

0 ≤ t < 1, 1 ≤ t < 2, 2 ≤ t <∞.

Solution:

(i) Using Laplace transform we obtain

s2Y − Y =
es

s
+
e2s

s
=⇒ Y (s) =

e−s

s(s2 − 1)
+

e−2s

s(s2 − 1)
.

We have
1

s(s2 − 1)
=

1

s(s− 1)(s+ 1)
=
A

s
+

B

s− 1
+

C

s+ 1
.

This gives

1 = A(s2 − 1) +Bs(s+ 1) + Cs(s− 1) = (A+B + C)s2 + (B − C)s−A

=⇒ A+B + C = 0, B − C = 0,−A = 1 =⇒ A = −1, B = C =
1

2
.

Thus
1

s(s2 − 1)
=
−1

s
+

1/2

s− 1
+

1/2

s+ 1
,

which comes via Laplace transform from the function

−1 +
1

2
et +

1

2
e−t.

Thus

y(t) = u1(t)

(
−1 +

1

2
et−1 +

1

2
e−t+1

)
+ u2(t)

(
−1 +

1

2
et−2 +

1

2
e−t+2

)
.

(ii) For t < 1 we have u1(t) = u2(t) = 0 so

y(t) = 0.

For 1 ≤ t < 2 we have u1(t) = 1 and u2(t) = 0 so

y(t) = −1 +
1

2
et−1 +

1

2
e−t+1.

For t ≥ 2 we have u1(t) = u2(t) = 1 so

y =

(
−1 +

1

2
et−1 +

1

2
e−t+1

)
+

(
−1 +

1

2
et−2 +

1

2
e−t+2

)
= −2 +

1

2
et−1 +

1

2
e−t+1 +

1

2
et−2 +

1

2
e−t+2.


