
Problem 1.

The differential equation

(2x sin y + y2) + (x2 cos y + 2xy + ey)y′ = 0, y(0) = 0

is exact (you do not need to check this). Solve the differential equation and give the solution
implicitly.

Write
M = 2x sin y + y2 and N = x2 cos y + 2xy + ey.

We search for a function Ψ such that

Ψx = 2x sin y + y2, Ψy = x2 cos y + 2xy + ey.

From the first equation we conclude

Ψ = x2 sin y + xy2 + h(y).

Thus differentiating with respect to y we find

Ψy = 2x cos y + 2xy + h′(y)

and comparing with Ψy = x2 cos y + 2xy + ey we obtain h′(y) = ey. Hence h(y) = ey and

Ψ = x2 sin y + xy2 + ey.

The solution is constant along the potential function hence

x2 sin y + xy2 + ey = c.

Since y(0) = 0, by substitution we find c = 1. Hence the implicit solution is

x2 sin y + xy2 + ey = 1.
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Problem 2.

Consider the autonomous differential equation

dy

dt
= y2 − 4y + 3.

Determine the critical points and indicate their type i.e. asymptotically stable, unstable, semistable.
What is the long-term behavior of the solution satisfying the initial value y(0) = 2?

The critical points are found by solving

y2 − 4y + 3 = 0 =⇒ (y − 1)(y − 3) = 0 =⇒ y = 1 or y = 3.

The function y2− 4y+ 3 has a graph a parabola which is seen to be positive for y < 1 and y > 3
and negative in the interval 1 < y < 3. Looking at the derivative

dy

dt
= y2 − 4y + 3

we see that

– the derivative dy
dt is positive for y < 1 and y > 3 so the function y is increasing for y < 1

and y > 3
– similarly, the solution y is decreasing for 1 < y < 3.

Therefore, y = 1 is a stable critical point, while y = 3 is an unstable critical point.

The solution with y(0) = 2 will converge towards the stable critical value in the long run, so

lim
t→∞

y(t) = 1.



Problem 3.

Find the solution to the initial value problem

t3y′ + 5t2y = 3, y(−1) = 2.

Where is the solution defined?

We write the equation in standard form

y′ +
5

t
y =

3

t3
.

We solve using an integrating factor

µ = exp

∫
5

t
dt = exp (5 ln t) = t5.

Multiplying both sides by the integrating factor yields

(t5y)′ = t5 · 3

t3
= 3t2

which gives
t5y = t3 + C.

Thus

y =
1

t2
+
C

t5
.

Since y(−1) = 2 we obtain C = −1 so that

y =
1

t2
− 1

t5
.

The solution is defined over the interval (−∞, 0).



Problem 4.

Write down the general solution of the differential equation

y′′ + 4y′ + 5y = 0.

Sketch the graph of the solution.

We form the characteristic equation

r2 + 4r + 5 = 0

which has complex roots

r1,2 =
−4±

√
42 − 4 · 5
2

= −2± i.
Thus the complex solutions are

y1 = e(−2+i)t = e−2t(cos t+ i sin t), y2 = e(−2−i)t = e−2t(cos t− i sin t).

To find two real solutions we compute the real and the imaginary part of one of the two complex
solutions. We obtain

u = e−2t cos t, v = e−2t sin t.

The general real value solution is

y = c1e
−2t cos t+ c2e

−2t sin t.

The graph is a damped oscillation whose amplitude decays as the exponential e−2t.



Problem 5.

A swimming pool originally contains 200 gallons of water and 50 lb of salt. Water containing 4
lb of salt per gallon is poured into the pool at a rate of 2 gal/min. The mixture is allowed to leave
the pool at the same rate. Find the amount of salt in the pool at time t.

Let Q(t) be the amount of salt at time t. We write

dQ

dt
= Salt in− Salt out = cin · ratein − cout · rateout.

Both rate in and rate out equal 2 gal/min. The concentration of salt going in is 4 lb/gal and
Q(t)/200 lb/gal going out respectively. Substituting we find

dQ

dt
= 2 · 4− 2 · Q

200
= 8− Q

100
=

800−Q
100

.

This equation is separable. We obtain

dQ

800−Q
=

dt

100
=⇒

∫
dQ

800−Q
=

∫
dt

100
=⇒ − ln(800−Q) =

t

100
+ C

which gives
800−Q = Ke−t/100 =⇒ Q = 800−Ke−t/100.

The initial value is Q(0) = 50 which yields

800−K = 50 =⇒ K = 750.

Thus
Q(t) = 800− 750e−t/100.


