Problem 1.

The differential equation

$$
\left(2 x \sin y+y^{2}\right)+\left(x^{2} \cos y+2 x y+e^{y}\right) y^{\prime}=0, \quad y(0)=0
$$

is exact (you do not need to check this). Solve the differential equation and give the solution implicitly.

Write

$$
M=2 x \sin y+y^{2} \text { and } N=x^{2} \cos y+2 x y+e^{y} .
$$

We search for a function Ψ such that

$$
\Psi_{x}=2 x \sin y+y^{2}, \quad \Psi_{y}=x^{2} \cos y+2 x y+e^{y} .
$$

From the first equation we conclude

$$
\Psi=x^{2} \sin y+x y^{2}+h(y) .
$$

Thus differentiating with respect to y we find

$$
\Psi_{y}=2 x \cos y+2 x y+h^{\prime}(y)
$$

and comparing with $\Psi_{y}=x^{2} \cos y+2 x y+e^{y}$ we obtain $h^{\prime}(y)=e^{y}$. Hence $h(y)=e^{y}$ and

$$
\Psi=x^{2} \sin y+x y^{2}+e^{y} .
$$

The solution is constant along the potential function hence

$$
x^{2} \sin y+x y^{2}+e^{y}=c .
$$

Since $y(0)=0$, by substitution we find $c=1$. Hence the implicit solution is

$$
x^{2} \sin y+x y^{2}+e^{y}=1 .
$$

Problem 2.

Consider the autonomous differential equation

$$
\frac{d y}{d t}=y^{2}-4 y+3 .
$$

Determine the critical points and indicate their type i.e. asymptotically stable, unstable, semistable. What is the long-term behavior of the solution satisfying the initial value $y(0)=2$?

The critical points are found by solving

$$
y^{2}-4 y+3=0 \Longrightarrow(y-1)(y-3)=0 \Longrightarrow y=1 \text { or } y=3 .
$$

The function $y^{2}-4 y+3$ has a graph a parabola which is seen to be positive for $y<1$ and $y>3$ and negative in the interval $1<y<3$. Looking at the derivative

$$
\frac{d y}{d t}=y^{2}-4 y+3
$$

we see that

- the derivative $\frac{d y}{d t}$ is positive for $y<1$ and $y>3$ so the function y is increasing for $y<1$ and $y>3$
- similarly, the solution y is decreasing for $1<y<3$.

Therefore, $y=1$ is a stable critical point, while $y=3$ is an unstable critical point.
The solution with $y(0)=2$ will converge towards the stable critical value in the long run, so

$$
\lim _{t \rightarrow \infty} y(t)=1
$$

Problem 3.

Find the solution to the initial value problem

$$
t^{3} y^{\prime}+5 t^{2} y=3, \quad y(-1)=2 .
$$

Where is the solution defined?
We write the equation in standard form

$$
y^{\prime}+\frac{5}{t} y=\frac{3}{t^{3}} .
$$

We solve using an integrating factor

$$
\mu=\exp \int \frac{5}{t} d t=\exp (5 \ln t)=t^{5} .
$$

Multiplying both sides by the integrating factor yields

$$
\left(t^{5} y\right)^{\prime}=t^{5} \cdot \frac{3}{t^{3}}=3 t^{2}
$$

which gives

$$
t^{5} y=t^{3}+C
$$

Thus

$$
y=\frac{1}{t^{2}}+\frac{C}{t^{5}} .
$$

Since $y(-1)=2$ we obtain $C=-1$ so that

$$
y=\frac{1}{t^{2}}-\frac{1}{t^{5}} .
$$

The solution is defined over the interval $(-\infty, 0)$.

Problem 4.

Write down the general solution of the differential equation

$$
y^{\prime \prime}+4 y^{\prime}+5 y=0 .
$$

Sketch the graph of the solution.
We form the characteristic equation

$$
r^{2}+4 r+5=0
$$

which has complex roots

$$
r_{1,2}=\frac{-4 \pm \sqrt{4^{2}-4 \cdot 5}}{2}=-2 \pm i .
$$

Thus the complex solutions are

$$
y_{1}=e^{(-2+i) t}=e^{-2 t}(\cos t+i \sin t), y_{2}=e^{(-2-i) t}=e^{-2 t}(\cos t-i \sin t)
$$

To find two real solutions we compute the real and the imaginary part of one of the two complex solutions. We obtain

$$
u=e^{-2 t} \cos t, v=e^{-2 t} \sin t
$$

The general real value solution is

$$
y=c_{1} e^{-2 t} \cos t+c_{2} e^{-2 t} \sin t .
$$

The graph is a damped oscillation whose amplitude decays as the exponential $e^{-2 t}$.

Problem 5.

A swimming pool originally contains 200 gallons of water and 50 lb of salt. Water containing 4 lb of salt per gallon is poured into the pool at a rate of $2 \mathrm{gal} / \mathrm{min}$. The mixture is allowed to leave the pool at the same rate. Find the amount of salt in the pool at time t.

Let $Q(t)$ be the amount of salt at time t. We write

$$
\frac{d Q}{d t}=\text { Salt in }- \text { Salt out }=c_{\text {in }} \cdot \text { rate }_{\text {in }}-c_{\text {out }} \cdot \text { rate }_{\text {out }} .
$$

Both rate in and rate out equal $2 \mathrm{gal} / \mathrm{min}$. The concentration of salt going in is $4 \mathrm{lb} / \mathrm{gal}$ and $Q(t) / 200 \mathrm{lb} /$ gal going out respectively. Substituting we find

$$
\frac{d Q}{d t}=2 \cdot 4-2 \cdot \frac{Q}{200}=8-\frac{Q}{100}=\frac{800-Q}{100} .
$$

This equation is separable. We obtain

$$
\frac{d Q}{800-Q}=\frac{d t}{100} \Longrightarrow \int \frac{d Q}{800-Q}=\int \frac{d t}{100} \Longrightarrow-\ln (800-Q)=\frac{t}{100}+C
$$

which gives

$$
800-Q=K e^{-t / 100} \Longrightarrow Q=800-K e^{-t / 100}
$$

The initial value is $Q(0)=50$ which yields

$$
800-K=50 \Longrightarrow K=750 .
$$

Thus

$$
Q(t)=800-750 e^{-t / 100}
$$

