Instructions

- 1. Write your Name and PID on the front of your Blue Book.
- 2. No calculators or other electronic devices are allowed during this exam.
- 3. You may use a double sided page of notes.
- 4. Write your solutions clearly in your Blue Book.
 - (a) Carefully indicate the number and letter of each question and question part.
 - (b) Present your answers in the same order as they appear in the exam.
 - (c) Start each numbered problem on a new side of a page.
- 5. Show all of your work and justify all your claims. No credit will be given for unsupported answers, even if correct.

Complete 10 out of the 11 questions

1. (10 points) Find the general solution for the system:

$$\mathbf{x}' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} -t \\ 4 - 3t \\ 1 - 2t \end{pmatrix}$$
(1)

Solution: The general solution \mathbf{x} to any non-homogeneous system as above is always a sum of the homogeneous solution \mathbf{x}_h and a particular solution \mathbf{x}_p

$$\mathbf{x} = \mathbf{x}_h + \mathbf{x}_p \tag{2}$$

The homogeneous solution \mathbf{x}_h is calculated by solving the system:

$$\mathbf{x}' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{x}$$
(3)

To find a particular solution \mathbf{x}_p we can use the method of undetermined coefficients. Since the vector function

$$\begin{pmatrix} -t\\4-3t\\1-2t \end{pmatrix} = \begin{pmatrix} 0\\4\\1 \end{pmatrix} + \begin{pmatrix} -1\\-3\\-2 \end{pmatrix} t$$

in (1) is linear (no powers of t greater than 1), the general form of a particular solution is given by:

$$\mathbf{x}_p = \mathbf{a} + \mathbf{b}t$$

for some vectors \mathbf{a} , \mathbf{b} . By substituting this into (1) we can solve for \mathbf{a} and \mathbf{b} .

Finding the homogeneous solution:

The general homogeneous solution \mathbf{x}_h is the general solution to the system (3).

To calculate the eigenvalues of $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ we determine the characteristic equation:

$$\det \begin{pmatrix} 1-r & 1 & 0\\ 0 & 3-r & 0\\ 0 & 0 & 2-r \end{pmatrix} = 0$$

Calculating the determinant on the left hand side (by expanding along the first column) we get:

$$\det \begin{pmatrix} 1-r & 1 & 0\\ 0 & 3-r & 0\\ 0 & 0 & 2-r \end{pmatrix} = (1-r) \cdot \det \begin{pmatrix} 3-r & 0\\ 0 & 2-r \end{pmatrix} = (1-r)(3-r)(2-r) = 0$$

So we have 3 distinct eigenvalues

$$r_1 = 1$$

 $r_2 = 2$
 $r_3 = 3$

Calculating eigenvalue u_1 (corresponding to $r_1 = 1$):

 $\mathbf{u_1}$ is any non-zero solution to the matrix equation:

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

(notice 1 subtracted from the leading diagonal)

Equivalently this can be rewritten as a system of equations:

$$0a + b + 0c = 0 \implies b = 0$$

$$0a + 2b + 0c = 0$$

$$0a + 0b + c = 0 \implies c = 0$$

Using the above:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Let a = 1 to get

$$\mathbf{u_1} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$$

Calculating eigenvalue u_2 (corresponding to $r_2 = 2$): u_2 is any non-zero solution to:

$$\begin{pmatrix} -1 & 1 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a\\ b\\ c \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$$

(notice 2 subtracted from the leading diagonal)

Equivalently this can be rewritten as a system of equations:

$$-a + b + 0c = 0 \implies a = b$$
$$0a + b + 0c = 0 \implies b = 0$$
$$0a + 0b + 0c = 0$$

Using the above:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ c \end{pmatrix} = c \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Let c = 1 to get

$$\mathbf{u_2} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

Calculating eigenvalue u_3 (corresponding to $r_3 = 3$):

 \mathbf{u}_3 is any non-zero solution to (notice 3 subtracted from the leading diagonal):

$$\begin{pmatrix} -2 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

The method of row reduction can be used to solve this. **Reference** Equivalently this can be rewritten as a system of equations:

$$-2a + b + 0c = 0 \implies b = 2a$$
$$0a + 0b + 0c = 0$$
$$0a + 0b - c = 0 \implies c = 0$$

Using the above:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ 2a \\ 0 \end{pmatrix} = a \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$

Let a = 1 to get

$$\mathbf{u_3} = \begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix}$$

The homogeneous solution is given by:

$$\mathbf{x}_{h}(t) = c_{1}\mathbf{u}_{1}e^{r_{1}t} + c_{2}\mathbf{u}_{2}e^{r_{2}t} + c_{3}\mathbf{u}_{3}e^{r_{3}t}$$
$$= c_{1}\begin{pmatrix}1\\0\\0\end{pmatrix}e^{t} + c_{2}\begin{pmatrix}0\\0\\1\end{pmatrix}e^{2t} + c_{3}\begin{pmatrix}1\\2\\0\end{pmatrix}e^{3t}$$

Finding a particular solution:

For the particular solution we substitute the guess $\mathbf{x}_p = \mathbf{a} + \mathbf{b}t$ into (1). We get:

$$\frac{d}{dt} \left(\mathbf{a} + \mathbf{b}t \right) = \begin{pmatrix} 1 & 1 & 0\\ 0 & 3 & 0\\ 0 & 0 & 2 \end{pmatrix} \left(\mathbf{a} + \mathbf{b}t \right) + \begin{pmatrix} -t\\ 4 & 3t\\ 1 & -2t \end{pmatrix}$$
$$\mathbf{b} = \begin{bmatrix} \begin{pmatrix} 1 & 1 & 0\\ 0 & 3 & 0\\ 0 & 0 & 2 \end{pmatrix} \mathbf{a} + \begin{pmatrix} 0\\ 4\\ 1 \end{pmatrix} \end{bmatrix} + \begin{bmatrix} \begin{pmatrix} 1 & 1 & 0\\ 0 & 3 & 0\\ 0 & 0 & 2 \end{pmatrix} \mathbf{b} + \begin{pmatrix} -1\\ -3\\ -2 \end{pmatrix} \end{bmatrix} t$$

On the right hand side of the second line I distributed the matrix products and separated the expression into two components: constants and multiples of t.

Comparing components on the two sides of the equation we get:

$$\mathbf{b} = \begin{bmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{a} + \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix} \end{bmatrix}$$

$$\mathbf{0} = \begin{bmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{b} + \begin{pmatrix} -1 \\ -3 \\ -2 \end{pmatrix} \end{bmatrix}$$
(4)

Rearranging the second equation of (4) we get:

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$

If we let $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ the above matrix equation represents the simultaneous equations:

$$b_1 + b_2 + 0b_3 = 1$$

$$0b_1 + 3b_2 + 0b_3 = 3 \implies b_2 = 1$$

$$0b_1 + 0b_2 + 2b_3 = 2 \implies b_3 = 1$$

Substituting $b_2 = 1$ into the first equation we get $b_1 = 0$. So:

$$\mathbf{b} = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

Now we can substitute \mathbf{b} into the first equation of (4):

$$\begin{pmatrix} 0\\1\\1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0\\0 & 3 & 0\\0 & 0 & 2 \end{pmatrix} \mathbf{a} + \begin{pmatrix} 0\\4\\1 \end{pmatrix}$$

Rearrange:

$$\begin{pmatrix} 0\\-3\\0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0\\0 & 3 & 0\\0 & 0 & 2 \end{pmatrix} \mathbf{a}$$

If we let $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ the above can be rewritten as:

$$a_1 + a_2 + 0a_3 = 0$$

 $0a_1 + 3a_2 + 0a_3 = -3 \implies a_2 = -1$
 $0a_1 + 0a_2 + 2a_3 = 0 \implies a_3 = 0$

Substituting $a_2 = -1$ into the first equation we get $a_1 = 1$. So:

$$\mathbf{a} = \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix}$$

This determines a particular solution:

$$\mathbf{x}_p = \mathbf{a} + \mathbf{b}t$$
$$= \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix} + \begin{pmatrix} 0\\ 1\\ 1 \end{pmatrix}t$$

Putting everything together, the general solution is given by:

$$\mathbf{x}(t) = \mathbf{x}_h + \mathbf{x}_p$$

= $c_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} e^t + c_2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} e^{2t} + c_3 \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} e^{3t} + \left(\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} t \right)$

2. (10 points) Solve the initial value problem:

$$\mathbf{x}' = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Solution: The first part of the solution is the same as Question 1. Characteristic polynomial:

$$\det \begin{pmatrix} -r & 1\\ -2 & 3-r \end{pmatrix} = 0 \implies r^2 - 3r + 2 = 0$$

Eigenval	ues:
----------	------

 $r_1 = 1, r_2 = 2$

Calculating \mathbf{u}_1 (associated to $r_1 = 1$):

Need to solve:

$$\begin{pmatrix} -1 & 1 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

As a system of simultaneous equation this is:

$$-a + b = 0$$
$$-2a + 2b = 0$$

Rearranging the first equation gives b = a so we can rewrite $\mathbf{u} = \begin{pmatrix} a \\ b \end{pmatrix}$ as:

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} b \\ b \end{pmatrix} = b \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Any choice of b (except b = 0) will give us an eigenvector, since there are no fractions to cancel let b = 1 to get:

$$\mathbf{u_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Calculating u₂ (associated to $r_2 = 2$):

Need to solve:

$$\begin{pmatrix} -2 & 1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

As a system of simultaneous equation this is:

$$-2a + b = 0$$
$$-2a + b = 0$$

Rearranging the first equation gives b = 2a so we can rewrite $\mathbf{u} = \begin{pmatrix} a \\ b \end{pmatrix}$ as:

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ 2a \end{pmatrix} = a \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Any choice of a (except a = 0) will give us an eigenvector, since there are no fractions to cancel let a = 1 to get:

$$\mathbf{u_2} = \begin{pmatrix} 1\\ 2 \end{pmatrix}$$

The general solution is then given by:

$$\mathbf{x}(t) = c_1 \begin{pmatrix} 1\\1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1\\2 \end{pmatrix} e^{2t}$$

Or equivalently as:

$$\mathbf{x}(t) = \begin{pmatrix} e^t & e^{2t} \\ e^t & 2e^{2t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$
(5)

Substituting t = 0 into (5) and using the initial condition $\mathbf{x}(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ we get:

$$\begin{pmatrix} 1\\-1 \end{pmatrix} = \begin{pmatrix} 1 & 1\\1 & 2 \end{pmatrix} \begin{pmatrix} c_1\\c_2 \end{pmatrix}$$

Interpreting this as a system of simultaneous equations we get:

$$c_1 + c_2 = 1$$

 $c_1 + 2c_2 = -1$

Subtracting one equation from the other we get $c_2 = -2$. Substituting $c_2 = -2$ back we get $c_1 = 3$.

So the solution is given by:

$$\mathbf{x}(t) = 3 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t - 2 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{2t} = \begin{pmatrix} 3e^t - 2e^{2t} \\ 3e^t - 4e^{2t} \end{pmatrix}$$

3. (10 points) Consider the following differential equation

$$y''(t) - 3y'(t) + 2y(t) = f(t)$$

Using the method of undetermined coefficients, determine the general form of a particular solution $y_p(t)$ in the following cases (do not calculate the unknown constants):

- (a) $f(t) = t^2 + 1$
- (b) $f(t) = te^t + t$
- (c) $f(t) = \sin(t) + \cos(2t)$
- (d) $f(t) = \sin(t)e^{2t}$

Solution: It is a good idea to start by calculating the auxiliary roots of the given differential equation, so we know when to add an extra t (or potentially t^2) into the solution. Here the auxiliary equation is $r^2 - 3r + 2 = 0$ with roots $r_1 = 1$, $r_2 = 2$. This means if we f(t) includes $p(t)e^t$ or $p(t)e^{2t}$ where p(t) is any polynomial we will need to add an extra t.

(a) f(t) is a quadratic polynomial so the guess for the particular solution is the general quadratic function:

$$y_p(t) = At^2 + Bt + C$$

Note: If 0 was one of the auxiliary roots, the correct guess would be $y_p(t) = t(At^2 + Bt + C)$

(b) f(t) is a sum of two functions that we handle separately. te^t is a product of a linear polynomial t and an exponential e^t . The corresponding guess would normally be given by $(At + B)e^t$, however because 1 is an auxiliary root e^t is already a homogeneous solution and so we need to include an extra t. This means $(At + B)te^t$ is the correct guess corresponding to te^t .

The correct guess corresponding to t is just Ct + D as normal.

Combining the two guesses into one sum we get:

$$y_p(t) = (At+B)te^t + (Ct+D)$$

(c) f(t) is a sum of two trigonometric functions with different arguments (2t and 3t) so we treat these as separate.

The correct guess associated to $\sin(t)$ is $A\cos(t) + B\sin(t)$ and the correct guess associated to $\cos(2t)$ is $C\cos(2t) + D\sin(2t)$. Combining the two we get:

$$y_p(t) = A\cos(t) + B\sin(t) + C\cos(2t) + D\sin(2t)$$

(d) f(t) is a product of a trigonometric function sin(t) and an exponential e^{2t} and so the corresponding guess is the general product of the two:

$$y_p(t) = A\cos(t)e^{2t} + B\sin(t)e^{2t}$$

(Remember that you need to include both sin and cos)

Notice that despite the fact that 2 is an auxiliary root we do not include an extra power of t for e^{2t} . We would add an extra t into the guess here only if $2 \pm i$ were the auxiliary roots.

4. (10 points) Solve the equation

$$(y^3 + 4e^x y)dx + (4e^x + 3y^2 x)dy = 0$$

Solution: This looks like an exact equation but we first **need to check for exactness**: Here we have:

$$M(x, y) = y^3 + 4e^x y$$
$$N(x, y) = 4e^x + 3y^2 x$$

Need to check if:

 $M_y = N_x$

Taking partial derivatives:

$$M_y(x,y) = 3y^2 + 4e^x$$
$$N_x(x,y) = 4e^x + 3y^2$$

So this is an exact equation.

We can now look for a solution of the form

$$F(x,y) = C$$

Where $F_x = M$ and $F_y = N$.

Integrating M with respect to x (and treating y as a constant) we get:

$$\int y^3 + 4e^x y \ dx = y^3 x + 4e^x y$$

Integrating N with respect to y (and treating x as a constant) we get:

$$\int 4e^x + 3y^2x \, dy = 4e^xy + y^3x$$

F(x,y) is a sum of the unique terms in the above calculations. y^3x and $4e^xy$ both show up twice and so:

$$F(x,y) = y^3x + 4e^xy$$

With solutions given by

$$y^3x + 4e^xy = C$$

for any constant C.

5. (10 points) Solve the initial value problem:

$$\frac{dy}{dx} - \frac{y}{x} = xe^x, \quad y(1) = e - 1$$

Solution: Since this is a differential equation of the form

$$\frac{dy}{dx} + P(x)y = Q(x)$$

where

$$P(x) = -\frac{1}{x}$$
$$Q(x) = xe^{x}$$

this is a **linear equation**.

This means we have to find the integrating factor μ , recall this is calculated as:

$$\mu(x) = e^{\int P \, dx}$$

So in this case:

$$\mu(x) = e^{\int -\frac{1}{x} dx}$$
$$= e^{-\ln(x)}$$
$$= e^{\ln(1/x)}$$
$$= \frac{1}{x}$$

Multiplying the differential equation by $\frac{1}{x}$ and simplifying gives:

$$\frac{d}{dx}\left(\frac{1}{x}\cdot y\right) = e^x \implies \frac{1}{x}\cdot y = \int e^x dx + C$$

Calculating the integral and solving for y we get:

$$y = x(e^x + C)$$

Applying the initial condition at t = 1:

$$(e-1) = 1(e^1 + C) \implies C = -1$$

So the solution is:

$$y = x(e^x - 1)$$

6. (10 points) Find the general solution to the following equations:(a)

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 10y = 0$$

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$$

Solution: We need to determine and solve characteristic polynomial in each case:

(a) Characteristic Equation:

$$r^2 + 2r + 10 = 0 \implies (r+1)^2 + 9 = 0 \implies r = -1 \pm 3i$$

We need to use the form of the general solution corresponding to complex auxiliary roots $\alpha \pm i\beta$, recall that this is given by:

$$y(x) = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x)$$

In particular the general solution in our case corresponds to $\alpha = -1$, $\beta = 3$:

$$y(x) = c_1 e^{-x} \cos(3x) + c_2 e^{-x} \sin(3x)$$

(b) Characteristic Equation:

$$r^2 + 2r + 1 = 0 \implies (r+1)^2 = 0 \implies r = -1 \text{ (repeated)}$$

We need to use the form of the general solution corresponding to a repeated real root r, recall that this is given by:

$$y(x) = c_1 e^{rx} + c_2 x e^{rx}$$

In particular the general solution in our case corresponds to r = -1:

$$y(x) = c_1 e^{-x} + c_2 x e^{-x}$$

7. (10 points) Find the general solution to the differential equation

$$y'' = 5x^{-1}y' - 13x^{-2}y, \quad x > 0$$

How would your answer change if we wanted a solution valid for x < 0?

Solution: This looks like a strange equation but is a Cauchy-Euler equation in disguise. If we multiply the equation through by x^2 and rearrange we get:

$$x^2y'' - 5xy' + 13y = 0, \quad x > 0$$

The characteristic equation corresponding to this Cauchy-Euler equation is given by:

$$r^2 + (-5 - 1)r + 13 = 0$$

Simplify and solve:

$$r^{2} - 6r + 13 = 0 \implies (r - 3)^{2} + 4 = 0 \implies r = 3 \pm 2i$$

The general solution to a Cauchy-Euler equation with complex roots $\alpha \pm i\beta$ to the associated characteristic equation is given by:

$$y(x) = c_1 x^{\alpha} \cos(\beta \ln(x)) + c_2 x^{\alpha} \sin(\beta \ln(x))$$

In this question we have $\alpha = 3$, $\beta = 2$ and so the general solution (for x > 0) is given by:

$$y(x) = c_1 x^3 \cos(2\ln(x)) + c_2 x^3 \sin(2\ln(x))$$

If we wanted a solution valid for x < 0 we replace x with -x to get:

$$y(x) = c_1(-x)^3 \cos(2\ln(-x)) + c_2(-x)^3 \sin(2\ln(-x))$$

8. (10 points) Using variation of parameters, find a particular solution to the differential equation

$$y'' - 2y' + y = \frac{e^t}{t}$$

Solution. We can only apply variation of parameters if we already have two linearly independent homogeneous solutions. Luckily here the left hand side has an easy auxiliary equation $r^2 - 2r + 1 = 0$ with r = 1 as a repeated root. This means we have two linearly independent solutions:

$$y_1(t) = e^t$$
$$y_2(t) = te^t$$

This let's us set up the particular solution as:

$$y_p(t) = v_1(t)y_1(t) + v_2(t)y_2(t) = v_1(t)e^t + v_2(t)te^t$$

where $v_1(t)$ and $v_2(t)$ are determined by the equations:

$$y_1v_1' + y_2v_2' = 0$$

$$y_1'v_1' + y_2'v_2' = \frac{f}{a}$$
(6)

Here $f = \frac{e^t}{t}$ is the non-homogeneous part of the differential equation and a = 1 is the coefficient of y''.

We calculate $y'_1 = e^t$, $y'_2 = e^t + te^t$ and substitute into (8) to get:

$$e^{t}v'_{1} + te^{t}v'_{2} = 0$$
$$e^{t}v'_{1} + (e^{t} + te^{t})v'_{2} = \frac{e^{t}}{t}$$

Subtract one equation from another to get:

$$e^t v_2' = \frac{e^t}{t} \implies v_2' = \frac{1}{t} \implies v_2 = \ln|t|$$

Substituting $v'_2 = \frac{1}{t}$ into the first equation we get:

$$e^t v_1' + t e^t \left(\frac{1}{t}\right) = 0 \implies v_1' = -1 \implies v_1 = -t$$

So a particular solution is given by:

$$y_p(t) = v_1(t)e^t + v_2(t)te^t$$
$$= -te^t + \ln|t|te^t$$
$$= te^t(\ln|t| - 1)$$

Note: the question does not specify whether t > 0 or t < 0, so we need to keep the absolute value sign in $\ln |t|$ throughout.

9. (10 points) Find a general solution to the system of differential equations

$$\frac{dx}{dt} = x(t) - 4y(t)$$
$$\frac{dy}{dt} = x(t) + y(t)$$

Solution: We can rewrite this as a system of differential equations $\mathbf{x}' = A\mathbf{x}$ with:

$$\mathbf{x}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$
 and $A = \begin{pmatrix} 1 & -4 \\ 1 & 1 \end{pmatrix}$

The solution starts in the same way as in Question 1.

Characteristic polynomial:

$$\det \begin{pmatrix} 1 - r & -4 \\ 1 & 1 - r \end{pmatrix} = 0 \implies (1 - r)^2 + 4 = 0$$

Eigenvalues:

 $1+2i, 1-2i \implies \alpha = 1, \beta = 2$

Calculating complex eigenvector:

The complex eigenvalue $\mathbf{z} = \mathbf{a} + i\mathbf{b}$ (where \mathbf{a} and \mathbf{b} are real vectors) associated to the eigenvalue 1 + 2i is calculated by solving:

$$(A - (1+2i)I)\mathbf{z} = \mathbf{0}$$

for **u**. In this case we are solving:

$$\begin{pmatrix} -2i & -4\\ 1 & -2i \end{pmatrix} \begin{pmatrix} a\\ b \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

As a system of equations this is:

$$-2ia - 4b = 0$$
$$a - 2ib = 0$$

_

Rearranging the first equation:

$$b = \frac{-2ia}{4} = \left(-\frac{1}{2}i\right)a$$

The solution is then given by:

$$\mathbf{z} = \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ \left(-\frac{1}{2}i\right)a \end{pmatrix} = a \begin{pmatrix} 1 \\ -\frac{1}{2}i \end{pmatrix}$$

for any non-zero constant a.

Any choice of a (except 0) gives us an eigenvector, so to get rid of fractions let a = 2 and get:

$$\mathbf{z} = \begin{pmatrix} 2\\ -i \end{pmatrix} = \begin{pmatrix} 2\\ 0 \end{pmatrix} + i \begin{pmatrix} 0\\ -1 \end{pmatrix}$$

So:

$$\mathbf{a} = \begin{pmatrix} 2\\ 0 \end{pmatrix}$$
$$\mathbf{b} = \begin{pmatrix} 0\\ -1 \end{pmatrix}$$

From this we can write down the general solution:

$$\mathbf{x} = c_1 e^{\alpha t} \left(\mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t) \right) + c_2 e^{\alpha t} \left(\mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t) \right)$$
$$= c_1 e^t \left(\begin{pmatrix} 2 \\ 0 \end{pmatrix} \cos(2t) - \begin{pmatrix} 0 \\ -1 \end{pmatrix} \sin(2t) \right) + c_2 e^t \left(\begin{pmatrix} 2 \\ 0 \end{pmatrix} \sin(2t) + \begin{pmatrix} 0 \\ -1 \end{pmatrix} \cos(2t) \right)$$
$$= c_1 e^t \left(\begin{pmatrix} 2 \cos(2t) \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ -\sin(2t) \end{pmatrix} \right) + c_2 e^t \left(\begin{pmatrix} 2 \sin(2t) \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -\cos(2t) \end{pmatrix} \right)$$
$$= c_1 e^t \begin{pmatrix} 2 \cos(2t) \\ \sin(2t) \end{pmatrix} + c_2 e^t \begin{pmatrix} 2 \sin(2t) \\ -\cos(2t) \end{pmatrix}$$

г		
L		
L		

10. (10 points) Solve the initial value problem

$$\frac{dy}{dx} - (1+y^2)\tan(x) = 0, \quad y(0) = \sqrt{3}$$

Proof. Rearranging the equation we get:

$$\frac{dy}{dx} = (1+y^2)\tan(x), \quad y(0) = \sqrt{3}$$

Notice that the right hand side function is conveniently separated into a product of the type $f(x) \cdot g(y)$ so we can identify this as a separated equation. Rearranging the equation we get:

$$\frac{dy}{1+y^2} = \tan(x)dx$$

Integrate both sides (recall you only need +C on one side):

$$\int \frac{dy}{1+y^2} = \int \tan(x)dx + C \tag{7}$$

Both of these are standard integrals:

$$\int \frac{1}{1+y^2} \, dy = \arctan(y)$$
$$\int \arctan(x) \, dx = -\ln|\cos(x)|$$

Substituting these into (7) above we get:

$$\arctan(y) = -\ln|\cos(x)| + C \implies y = \tan(C - \ln|\cos(x)|)$$

We are given an initial condition at x = 0 so we are looking for a solution near x = 0 where $\cos(x) > 0$. This means that

$$\ln|\cos(x)| = \ln(\cos(x))$$

Applying the initial condition we can solve for C:

$$\sqrt{3} = \tan(C - \ln|\cos(0)|) = \tan(C) \implies C = \frac{\pi}{3}$$

So the solution is:

$$y = \tan\left(\frac{\pi}{3} - \ln|\cos(x)|\right)$$

11. (10 points) (a) Verify that $S = \left\{ \begin{pmatrix} e^{2t} \\ -e^{2t} \end{pmatrix}, \begin{pmatrix} e^{3t} \\ -2e^{3t} \end{pmatrix} \right\}$ is a fundamental solution set to the system

$$\mathbf{x}' = \begin{pmatrix} 1 & -1\\ 2 & 4 \end{pmatrix} \mathbf{x} \tag{8}$$

(b) Solve the initial value problem

$$\mathbf{x}' = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Proof. (a) We need to check two things:

Part 1) Check that each function $\mathbf{x}(t)$ in S is a solution to the system (8) Part 2) Check whether these are **linearly independent** solutions

For Part 1) we check whether the functions in S are solutions by substituting them into the system (8).

For example, let $\mathbf{x} = \begin{pmatrix} e^{2t} \\ -e^{2t} \end{pmatrix}$ and substitute into (8):

LHS =
$$\frac{d}{dt} \begin{pmatrix} e^{2t} \\ -e^{2t} \end{pmatrix} = \begin{pmatrix} 2e^{2t} \\ -2e^{2t} \end{pmatrix}$$

RHS = $\begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} e^{2t} \\ -e^{2t} \end{pmatrix} = \begin{pmatrix} 2e^{2t} \\ -2e^{2t} \end{pmatrix}$

Since LHS = RHS we know that $\mathbf{x} = \begin{pmatrix} e^{2t} \\ -e^{2t} \end{pmatrix}$ is a solution. Similarly we can perform the same calculation with $\mathbf{x} = \begin{pmatrix} e^{3t} \\ -2e^{3t} \end{pmatrix}$ to check whether it is a solution. Instead of showing this calculation I want to highlight a method that can check both at the same time by verifying whether

$$X' = AX$$

holds, where X is the fundamental matrix:

$$X = \begin{pmatrix} e^{2t} & e^{3t} \\ -e^{2t} & -2e^{3t} \end{pmatrix}$$

This calculation looks like this:

LHS =
$$X' = \frac{d}{dt} \begin{pmatrix} e^{2t} & e^{3t} \\ -e^{2t} & -2e^{3t} \end{pmatrix} = \begin{pmatrix} 2e^{2t} & 3e^{3t} \\ -2e^{2t} & -6e^{3t} \end{pmatrix}$$

RHS = $AX = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} e^{2t} & e^{3t} \\ -e^{2t} & -2e^{3t} \end{pmatrix} = \begin{pmatrix} 2e^{2t} & 3e^{3t} \\ -2e^{2t} & -6e^{3t} \end{pmatrix}$

Since LHS = RHS both of the columns of X we solutions to $\mathbf{x}' = A\mathbf{x}$.

For Part 2) we can use the Wronskian to check for linear independence. Recall that the Wronskian is defined as the determinant of the fundamental matrix X.

$$\det (X) = \det \begin{pmatrix} e^{2t} & e^{3t} \\ -e^{2t} & -2e^{3t} \end{pmatrix} = -2e^{5t} + e^{5t} = -e^{5t}$$

Since $-e^{5t} \neq 0$ for all t the solutions from part (a) are linearly independent.

(b) We checked that the functions in S are two linearly independent solutions to the system (8), so any solution to (8) can be expressed as a linear combination of these two functions. We just need to determine the right coefficients to match the initial condition. The general solution is given by:

$$\mathbf{x}(t) = c_1 \begin{pmatrix} e^{2t} \\ -e^{2t} \end{pmatrix} + c_2 \begin{pmatrix} e^{3t} \\ -2e^{3t} \end{pmatrix}$$

Apply the initial condition at t = 0:

$$\mathbf{x}(0) = c_1 \begin{pmatrix} e^0 \\ -e^0 \end{pmatrix} + c_2 \begin{pmatrix} e^0 \\ -2e^0 \end{pmatrix}$$

On the other hand we have:

$$\mathbf{x}(0) = \begin{pmatrix} 0\\1 \end{pmatrix}$$

Combining the two:

$$\begin{pmatrix} 0\\1 \end{pmatrix} = c_1 \begin{pmatrix} 1\\-1 \end{pmatrix} + c_2 \begin{pmatrix} 1\\-2 \end{pmatrix}$$

This can be expressed a system of simultaneous equations:

$$c_1 + c_2 = 0$$

 $-c_1 - 2c_2 = 1$

Add the equations to get $-c_2 = 1 \implies c_2 = -1$ Substitute back in the first equation to get $c_1 = 1$ The solution is then given by:

$$\mathbf{x}(t) = c_1 \begin{pmatrix} e^{2t} \\ -e^{2t} \end{pmatrix} + c_2 \begin{pmatrix} e^{3t} \\ -2e^{3t} \end{pmatrix}$$
$$= \begin{pmatrix} e^{2t} \\ -e^{2t} \end{pmatrix} - \begin{pmatrix} e^{3t} \\ -2e^{3t} \end{pmatrix}$$
$$= \begin{pmatrix} e^{2t} - e^{3t} \\ -e^{2t} + 2e^{3t} \end{pmatrix}$$

	r	-	-