Math 20D - Spring 2017 - Midterm I

Name: \qquad

Student ID: \qquad

Section time: \qquad

Instructions:

Please print your name, student ID and section time.
During the test, you may not use books, calculators or telephones. You may use a "cheat sheet" of notes which should be at most a page, front only.

Read each question carefully, and show all your work. Answers with no explanation will receive no credit, even if they are correct.

There are 5 questions which are worth 50 points. You have 50 minutes to complete the test.

Question	Score	Maximum
1		10
2		10
3		10
4		10
5		10
Total		50

Problem 1. [10 points.]
The differential equation

$$
\left(2 x \sin y+y^{2}\right)+\left(x^{2} \cos y+2 x y+e^{y}\right) y^{\prime}=0, \quad y(0)=0
$$

is exact (you do not need to check this). Solve this initial value problem.
(You can leave the answer in implicit form, without solving explicitly for y.)

Problem 2. [10 points.]
Consider the autonomous differential equation

$$
\frac{d y}{d t}=y^{2}-4 y+3 .
$$

Determine the critical points and indicate their type i.e. asymptotically stable, unstable, semistable. What is the long-term behavior of the solution satisfying the initial value $y(0)=2$?

Problem 3. [10 points.]
Find the solution to the initial value problem

$$
t^{3} y^{\prime}+5 t^{2} y=3, \quad y(-1)=2
$$

What is the largest interval over which the solution is defined?

Problem 4. [10 points.]
Write down the general solution of the differential equation

$$
y^{\prime \prime}+4 y^{\prime}+5 y=0
$$

and sketch its graph.

Problem 5. [10 points.]
A swimming pool originally contains 200 gallons of water and 501 b of salt. Water containing 4 lb of salt per gallon is poured into the pool at a rate of $2 \mathrm{gal} / \mathrm{min}$. The mixture is simultaneously allowed to leave the pool at the same rate. Find the amount of salt in the pool at time t.

