Instructions

1. Write your Name and PID on the front of your Blue Book.
2. No calculators or other electronic devices are allowed during this exam.
3. You may use a double sided page of notes.
4. Write your solutions clearly in your Blue Book.
(a) Carefully indicate the number and letter of each question and question part.
(b) Present your answers in the same order as they appear in the exam.
(c) Start each numbered problem on a new side of a page.
5. Show all of your work and justify all your claims. No credit will be given for unsupported answers, even if correct.

Complete 5 out of the $\mathbf{6}$ questions

1. (10 points) Find the general solution to the differential equation

$$
\frac{d y}{d x}=\frac{y}{x}+x^{2} \cos (x)
$$

2. (10 points) Solve the initial value problem

$$
\frac{d y}{d x}=(x+y)^{2}-(x-y)^{2}, \quad y(1)=e^{2}
$$

Note: When simplifying you can assume $y(x)>0$ for all x
3. (10 points) [This question has multiple parts]
(a) Find the general solution $y_{h}(t)$ to the homogeneous differential equation

$$
\frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+9 y=0
$$

(b) Give the general form of a particular solution $y_{p}(t)$ to

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+9 y=t e^{t} \tag{1}
\end{equation*}
$$

(You do not need to solve for any unknown constants)
(c) Using (a) and (b) give the general solution to the non-homogeneous equation (1)
4. (10 points) Find the general solution to the differential equation

$$
\frac{d y}{d x}=\frac{2 x-y}{x+y-4}
$$

Hint: It may be a good idea to rewrite this as an equation involving a differential form.
5. (10 points) Solve the initial value problem

$$
\begin{equation*}
y^{\prime \prime}(t)+4 y(t)=4 \sin (2 t) ; \quad y(0)=1, y^{\prime}(0)=3 \tag{2}
\end{equation*}
$$

Hint: The general form of the particular solution to (2) is given by

$$
y_{p}(t)=A t \cos (2 t)
$$

6. (10 points) Solve the initial value problem for the Cauchy-Euler equation

$$
t^{2} y^{\prime \prime}(t)+7 t y^{\prime}(t)+5 y(t)=0 ; \quad y(1)=-1, y^{\prime}(1)=13
$$

