
Cauchy-Euler Equations

Recall that the general 2nd order linear differential equation is given by:

a(t)y′′ + b(t)y′ + c(t)y = f(t) (1)

We have seen that when a(t), b(t) and c(t) are constant functions (i.e. just
constants) we can solve the homogeneous equation corresponding to (1):

a(t)y′′ + b(t)y′ + c(t)y = 0 (2)

By the method summarized here.

For general functions a(t), b(t), c(t) finding homogeneous solutions to (2) is
very difficult. In fact, we have seen that using the method of variation of
parameters (explained here) we can use the homogeneous solutions to (2)
to construct particular solutions to (1). This means that in some sense the
hard part is finding the homogeneous solutions to differential equations.

In this section we learn how to find homogeneous solutions in the next
simplest kind of second order differential equation that is equidimensional,
meaning that we have:

a(t) = at2

b(t) = bt

c(t) = c

where a, b, c are now constants. Differential equations of this type are also
called Cauchy-Euler equations.

The method of solving them is very similar to the method of solving con-
stant coefficient homogeneous equations. We set up a quadratic equation
determined by the constants a, b, c, called the characteristic equation:

αr2 + (β − α)r + γ = 0 (3)

Homogeneous solutions to (2) are determined by the roots of (3). As before,
there are 3 different cases depending on the type of roots (3) has:

1. 2 distinct real roots r1 and r2
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2. 1 repeated real root r

3. 2 complex (conjugate) roots r1 = α+ iβ and r2 = α− iβ

These correspond to following general homogeneous solutions:

For t > 0:

yh(t) = C1t
r1 + C2t

r2 (Case 1)

yh(t) = C1t
r + C2 ln(t)tr (Case 2)

yh(t) = C1t
α cos(β ln(t)) + C2t

α sin(β ln(t)) (Case 3)

For t < 0:

yh(t) = C1(−t)r1 + C2(−t)r2 (Case 1)

yh(t) = C1(−t)r + C2 ln(−t)(−t)r (Case 2)

yh(t) = C1(−t)α cos(β ln(−t)) + C2(−t)α sin(β ln(−t)) (Case 3)

Solution Algorithm (Finding homogeneous solutions):

1. Determine the characteristic equation and solve it.

2. Use the roots of the auxiliary equation to decide which case you are in
and use the corresponding form of the general homogeneous solution
y(t).

Note: This depends on whether you are looking for a solution valid
for t > 0 or t < 0. This will either be clear from the question state-
ment (see the examples below), or you can deduce this from the initial
conditions. If the initial conditions are given at some positive time t
(i.e. y(1) = 4) then use the t > 0 solution, otherwise use the t < 0
solution.

3. (If given) apply initial conditions to solve for the constants C1 and C2.

Examples:

Example (4.7.13). Find the general solution to the given Cauchy-Euler
equation for t > 0

9t2y′′(t) + 15ty′(t) + y(t) = 0 (4)
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Solution: The coefficients of (4) determine the characteristic equation:

9r2 + 6r2 + 1 = 0

Factorizing we get (3r + 1)2 = 0 which has a repeated solution r = −1
3 .

So we use the general solution form corresponding to case 2 with r = −1
3

and t > 0. This means the general solution to (4) is given by:

yh(t) = C1t
− 1

3 + C2 ln(t)t−
1
3

We have no initial conditions so we cannot determine C1, C2

Example (4.7.19). Solve the given initial value problem for the Cauchy-
Euler equation:

t2y′′(t) − 4t2y′(t) + 4y(t) = 0; y(1) = −2, y′(1) = −11 (5)

Solution: As before we begin by solving the characteristic equation associ-
ated to (5):

r2 − 5r + 4 = 0

This factorizes as (r− 1)(r− 4) = 0 and so has distinct solutions r = 1 and
r = 4.

So we use the general solution form corresponding to case 1 with r1 = 1,
r2 = 2 and since the initial condition was given for positive t (i.e. at t = 1)
we want the solution to be valid for t > 0. This means the general solution
to (5) is given by:

yh(t) = C1t+ C2t
4 (6)

To make use of the second initial condition we need to differentiate once:

y′h(t) = C1 + 4C2t
3 (7)

Applying the initial condition y(1) = −2 to (6) we get:

−2 = C1 + C2

Applying the initial condition y′(1) = −11 to (7) we get:

−11 = C1 + 4C2
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Solving for C1 and C2 we get:

C1 = 1, C2 = −3

So the solution to the initial value problem (5) is given by:

yh(t) = t− 3t4

4


