
Exact Differential Equations

It is difficult to define what exactly a differential form is so for us a differ-
ential form will simply mean a mathematical expression of the form:

M(x, y)dx+N(x, y)dy

A differential form is called exact if there is a function F (x, y) such that:

∂F

∂x
= M and

∂F

∂y
= N

It is not at all obvious which differential forms are exact. Luckily we have
a test for exactness:

A differential form
M(x, y)dx+N(x, y)dy

is exact if and only if
∂M

∂y
=
∂N

∂x

A differential equation that can be rewritten as:

M(x, y)dx+N(x, y)dy = 0 (1)

where M(x, y)dx+N(x, y)dy is exact is called an exact equation.

Subtlety: There may be multiple ways to rewrite a particular differential
equation into the form given by (1). Some of these may be exact while
others may not! For example we can rewrite (1) as:

M(x, y)

N(x, y)
dx+ dy = 0

(This is almost never going to be exact)

Solution Algorithm:

1. Rewrite the differential equation in the form

M(x, y)dx+N(x, y)dy = 0
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to identify M and N .

Note: Be careful with negative signs! If you have an exact equation:

2xdx− 2ydy = 0

then N = −2y.

2. Determine if M(x, y)dx + N(x, y)dy is exact by applying the test for
exactness:

∂M

∂y
=
∂N

∂x

holds. If the differential form is exact we may proceed (if not we need
to apply a different method).

3. There is a choice of either integrating M(x, y) with respect to x or
N(x, y) with respect to y. Pick the easier of the two (for the rest of
the solution I will assume we start by integrating M to get:

F (x, y) :=

∫
M(x, y)dx+ g(y) (2)

When calculating the integral above treat y as a constant and notice
that g(y) replaces the usual constant of integration.

4. We need to determine g(y). Take the partial derivative of F (x, y) from
(2) with respect to y to get

∂F

∂y
=

∂

∂y

(∫
M(x, y)dx

)
+ g′(y) (3)

Because the differential equation is exact N(x, y) = ∂F
∂y so we can

compare (3) with N to determine g′(y).

5. Integrate g′(y) to get g(y) (there is no need to add +C here)

6. Substitute the newly calculated g(y) into (2) to determine F . The
(implicit) solution to the differential equation (1) is given by

F (x, y) = C

for some constant C.

7. If given an initial condition, solve for C
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Example (2.4.15). Determine whether the equation is exact. If it is, then
solve it.

cos(θ)dr − (r sin(θ)− eθ)dθ = 0 (4)

Solution: The variables are different in this question so it’s important not
to get confused. If we relabel x = r and y = θ we can identify:

M(r, θ) = cos(θ) N(r, θ) = eθ − r sin(θ)

Notice the sign change for N(r, θ)!

We need to check for exactness by calculating:

∂M

∂θ
= − sin(θ)

∂N

∂r
= − sin(θ)

We get equality so the differential form cos(θ)dr− (r sin(θ)− eθ)dθ is exact.
We may proceed with the solution.

At this state we have a choice of integrating M (with respect to r) or N
(with respect to θ). In this question it seems easier to integrate M so we
integrate:

F (r, θ) =

∫
cos(θ)dr + g(θ)

= r cos(θ) + g(θ)

Take the partial derivative with respect to θ:

∂F

∂θ
= −r sin(θ) + g′(θ)

Compare with N(r, θ):

−r sin(θ) + g′(θ) = eθ − r sin(θ) =⇒ g′(θ) = eθ

Integrate

g(θ) =

∫
eθdθ = eθ

So the solution to (4) is given (implicitly) by:

r cos(θ) + eθ = C

(We have no given initial condition so we cannot solve for C)
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Example (2.4.25). Solve the initial value problem

(y2 sin(x))dx+ (1/x− y/x)dy = 0, y(π) = 1 (5)

Solution: Identify M and N and test for exactness:

M(x, y) = y2 sin(x) =⇒ ∂M

∂y
= 2y sin(x)

N(x, y) = 1/x− y/x =⇒ ∂N

∂x
= − 1

x2
− y

x2

(6)

Since ∂M
∂y 6=

∂N
∂x this is not an exact differential equation so we cannot solve

it with the above method. It is however separable:

(y2 sin(x))dx+ (1/x− y/x)dy = 0 (7)

can be rewritten as

(x sin(x))dx =

(
y − 1

y2

)
dy (8)

Integrate: ∫
(x sin(x))dx =

∫ (
y − 1

y2

)
dy + C (9)

The left hand side can be solved with integration by parts:∫
(x sin(x))dx = −x cos(x)−

∫
(− cos(x)) dx

= −x cos(x) + sin(x)

(10)

The right hand should be split up as a sum of two integrals:∫ (
y − 1

y2

)
dy =

∫
1

y
− 1

y2
dy

= ln |y|+ 1

y

(11)

Substitute back into (9):

− x cos(x) + sin(x) = ln |y|+ 1

y
+ C (12)

Use the initial condition (y(π) = 1) to solve for C:

− (π)(−1) + 0 = 0 + 1 + C =⇒ C = π − 1 (13)
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The (implicit) solution is then given by

− x cos(x) + sin(x) = ln(y) +
1

y
+ π − 1 (14)

At this last step we got rid of the absolute value in the logarithm because
we are looking for solutions near the initial condition where y is positive so
|y| = y (if the initial condition was given as y(π) = −1 then y is negative
near the initial condition so would have replaced |y| with −y).

Example (2.4.21). Solve the initial value problem

(1/x+ 2y2x)dx+ (2yx2 − cos(y))dy = 0, y(1) = π (15)

Solution: Identify M and N and test for exactness:

M(x, y) = 1/x+ 2y2x =⇒ ∂M

∂y
= 4xy

N(x, y) = 2yx2 − cos(y) =⇒ ∂N

∂x
= 4xy

We get equality so the differential form (1/x+ 2y2x)dx+ (2yx2 − cos(y))dy
is exact. We may proceed with the solution.

It seems easier to integrate N with respect to y to get F (x, y) (note the
+g(x)):

F (x, y) =

∫
2yx2 − cos(y)dy + g(x) = x2y2 − sin(y) + g(x)

Now differentiate with respect to x:

∂F

∂x
= 2xy2 + g′(x)

Comparing with M we have:

g′(x) =
1

x
=⇒ g(x) = ln |x|

Because we want a solution near the initial condition y(1) = π (where x =
1 > 0) we have |x| = x and so ln |x| = ln(x).
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The (implicit) solutions to (15) is given by the level curves

x2y2 − sin(y) + ln(x) = C

Applying the initial condition:

(1)2(π)2 − sin(π) + ln(1) = C =⇒ C = π2

The (implicit) solution is then given by:

x2y2 − sin(y) + ln(x) = π2 (16)

6


