Non-homogeneous Systems

Example 1. Find the particular solution to the non-homogeneous system

$$\mathbf{x}' = \begin{pmatrix} 0 & 2\\ 4 & -2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 4t\\ -4t-2 \end{pmatrix}$$
(1)

Solution: Since the non-homogeneous part of the equation

$$\begin{pmatrix} 4t \\ -4t-2 \end{pmatrix}$$

is linear the particular solution should have the general form:

$$\mathbf{x}_p(t) = \mathbf{a} + \mathbf{b}t$$

Substituting into the system (5) we get:

$$\frac{d}{dt} \left(\mathbf{a} + \mathbf{b}t \right) = \begin{pmatrix} 0 & 2\\ 4 & -2 \end{pmatrix} \left(\mathbf{a} + \mathbf{b}t \right) + \begin{pmatrix} 4t\\ -4t - 2 \end{pmatrix}$$
$$\mathbf{b} = \begin{bmatrix} \begin{pmatrix} 0 & 2\\ 4 & -2 \end{pmatrix} \mathbf{a} + \begin{pmatrix} 0\\ -2 \end{pmatrix} \end{bmatrix} + \begin{bmatrix} \begin{pmatrix} 0 & 2\\ 4 & -2 \end{pmatrix} \mathbf{b} + \begin{pmatrix} 4\\ -4 \end{pmatrix} \end{bmatrix} t$$

Equate components:

$$\mathbf{b} = \begin{bmatrix} \begin{pmatrix} 0 & 2 \\ 4 & -2 \end{pmatrix} \mathbf{a} + \begin{pmatrix} 0 \\ -2 \end{pmatrix} \end{bmatrix}$$
$$\mathbf{0} = \begin{bmatrix} \begin{pmatrix} 0 & 2 \\ 4 & -2 \end{pmatrix} \mathbf{b} + \begin{pmatrix} 4 \\ -4 \end{pmatrix} \end{bmatrix}$$

Rearrange the second matrix equation to:

$$\begin{pmatrix} 0 & 2 \\ 4 & -2 \end{pmatrix} \mathbf{b} = \begin{pmatrix} -4 \\ 4 \end{pmatrix}$$

Solving we get:

$$\mathbf{b} = \begin{pmatrix} 0\\ -2 \end{pmatrix}$$

Substitute back into the first equation:

$$\begin{pmatrix} 0\\-2 \end{pmatrix} = \begin{pmatrix} 0 & 2\\4 & -2 \end{pmatrix} \mathbf{a} + \begin{pmatrix} 0\\-2 \end{pmatrix}$$

and rearrange:

$$\begin{pmatrix} 0 & 2 \\ 4 & -2 \end{pmatrix} \mathbf{a} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Solving we get:

$$\mathbf{a} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

So the particular solution is given by:

$$\mathbf{x}_p(t) = \mathbf{a} + \mathbf{b}t$$
$$= \begin{pmatrix} 0\\ 0 \end{pmatrix} + \begin{pmatrix} 0\\ -2 \end{pmatrix} t = \begin{pmatrix} 0\\ -2t \end{pmatrix}$$

Example 2. This is Question 9 on the practice final (found here)

Find the general solution for the system:

$$\mathbf{x}' = \begin{pmatrix} 1 & 1 & 0\\ 0 & 3 & 0\\ 0 & 0 & 2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} -t\\ 4 - 3t\\ 1 - 2t \end{pmatrix}$$
(2)

Solution: The general solution \mathbf{x} to any non-homogeneous system as above is always a sum of the homogeneous solution \mathbf{x}_h and a particular solution \mathbf{x}_p

$$\mathbf{x} = \mathbf{x}_h + \mathbf{x}_p \tag{3}$$

The homogeneous solution \mathbf{x}_h is calculated by solving the system:

$$\mathbf{x}' = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{x}$$
(4)

To find a particular solution \mathbf{x}_p we can use the method of undetermined coefficients. Since the vector function

$$\begin{pmatrix} -t\\4-3t\\1-2t \end{pmatrix} = \begin{pmatrix} 0\\4\\1 \end{pmatrix} + \begin{pmatrix} -1\\-3\\-2 \end{pmatrix} t$$

in (2) is linear (no powers of t greater than 1), the general form of a particular solution is given by:

$$\mathbf{x}_p = \mathbf{a} + \mathbf{b}t$$

for some vectors \mathbf{a} , \mathbf{b} . By substituting this into (2) we can solve for \mathbf{a} and b.

Finding the homogeneous solution:

The general homogeneous solution \mathbf{x}_h is the general solution to the system (4).

To calculate the eigenvalues of $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ we determine the characteristic

equation:

$$\det \begin{pmatrix} 1-r & 1 & 0\\ 0 & 3-r & 0\\ 0 & 0 & 2-r \end{pmatrix} = 0$$

Calculating the determinant on the left hand side (by expanding along the first column) we get:

$$\det \begin{pmatrix} 1-r & 1 & 0\\ 0 & 3-r & 0\\ 0 & 0 & 2-r \end{pmatrix} = (1-r) \cdot \det \begin{pmatrix} 3-r & 0\\ 0 & 2-r \end{pmatrix} = (1-r)(3-r)(2-r) = 0$$

So we have 3 distinct eigenvalues

$$r_1 = 1$$

 $r_2 = 2$
 $r_3 = 3$

Calculating eigenvalue u_1 (corresponding to $r_1 = 1$):

 \mathbf{u}_1 is any non-zero solution to the matrix equation:

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

(notice 1 subtracted from the leading diagonal)

Equivalently this can be rewritten as a system of equations:

$$0a + b + 0c = 0 \implies b = 0$$

$$0a + 2b + 0c = 0$$

$$0a + 0b + c = 0 \implies c = 0$$

Using the above:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Let a = 1 to get

$$\mathbf{u_1} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$$

Calculating eigenvalue u_2 (corresponding to $r_2 = 2$):

 $\mathbf{u_2}$ is any non-zero solution to:

$$\begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

(notice 2 subtracted from the leading diagonal)

Equivalently this can be rewritten as a system of equations:

$$-a + b + 0c = 0 \implies a = b$$
$$0a + b + 0c = 0 \implies b = 0$$
$$0a + 0b + 0c = 0$$

Using the above:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ c \end{pmatrix} = c \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Let c = 1 to get

$$\mathbf{u_2} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

Calculating eigenvalue u_3 (corresponding to $r_3 = 3$):

 $\mathbf{u_3}$ is any non-zero solution to (notice 3 subtracted from the leading diagonal):

$$\begin{pmatrix} -2 & 1 & 0\\ 0 & 0 & 0\\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} a\\ b\\ c \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$$

The method of row reduction can be used to solve this. Reference

Equivalently this can be rewritten as a system of equations:

$$-2a + b + 0c = 0 \implies b = 2a$$
$$0a + 0b + 0c = 0$$
$$0a + 0b - c = 0 \implies c = 0$$

Using the above:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ 2a \\ 0 \end{pmatrix} = a \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$

Let a = 1 to get

$$\mathbf{u_3} = \begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix}$$

The homogeneous solution is given by:

$$\mathbf{x}_{h}(t) = c_{1}\mathbf{u}_{1}e^{r_{1}t} + c_{2}\mathbf{u}_{2}e^{r_{2}t} + c_{3}\mathbf{u}_{3}e^{r_{3}t}$$
$$= c_{1}\begin{pmatrix}1\\0\\0\end{pmatrix}e^{t} + c_{2}\begin{pmatrix}0\\0\\1\end{pmatrix}e^{2t} + c_{3}\begin{pmatrix}1\\2\\0\end{pmatrix}e^{3t}$$

Finding a particular solution:

For the particular solution we substitute the guess $\mathbf{x}_p = \mathbf{a} + \mathbf{b}t$ into (2). We get:

$$\frac{d}{dt} \left(\mathbf{a} + \mathbf{b}t \right) = \begin{pmatrix} 1 & 1 & 0\\ 0 & 3 & 0\\ 0 & 0 & 2 \end{pmatrix} \left(\mathbf{a} + \mathbf{b}t \right) + \begin{pmatrix} -t\\ 4 - 3t\\ 1 - 2t \end{pmatrix}$$
$$\mathbf{b} = \begin{bmatrix} \begin{pmatrix} 1 & 1 & 0\\ 0 & 3 & 0\\ 0 & 0 & 2 \end{pmatrix} \mathbf{a} + \begin{pmatrix} 0\\ 4\\ 1 \end{pmatrix} \end{bmatrix} + \begin{bmatrix} \begin{pmatrix} 1 & 1 & 0\\ 0 & 3 & 0\\ 0 & 0 & 2 \end{pmatrix} \mathbf{b} + \begin{pmatrix} -1\\ -3\\ -2 \end{pmatrix} \end{bmatrix} t$$

On the right hand side of the second line I distributed the matrix products and separated the expression into two components: constants and multiples of t.

Comparing components on the two sides of the equation we get:

$$\mathbf{b} = \begin{bmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{a} + \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix} \end{bmatrix}$$

$$\mathbf{0} = \begin{bmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{b} + \begin{pmatrix} -1 \\ -3 \\ -2 \end{pmatrix} \end{bmatrix}$$
(5)

Rearranging the second equation of (5) we get:

$$\begin{pmatrix} 1 & 1 & 0\\ 0 & 3 & 0\\ 0 & 0 & 2 \end{pmatrix} \mathbf{b} = \begin{pmatrix} 1\\ 3\\ 2 \end{pmatrix}$$

If we let $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ the above matrix equation represents the simultaneous equations:

equations:

$$b_1 + b_2 + 0b_3 = 1$$

 $0b_1 + 3b_2 + 0b_3 = 3 \implies b_2 = 1$
 $0b_1 + 0b_2 + 2b_3 = 2 \implies b_3 = 1$

Substituting $b_2 = 1$ into the first equation we get $b_1 = 0$. So:

$$\mathbf{b} = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

Now we can substitute **b** into the first equation of (5):

$$\begin{pmatrix} 0\\1\\1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0\\0 & 3 & 0\\0 & 0 & 2 \end{pmatrix} \mathbf{a} + \begin{pmatrix} 0\\4\\1 \end{pmatrix}$$

Rearrange:

$$\begin{pmatrix} 0\\-3\\0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0\\0 & 3 & 0\\0 & 0 & 2 \end{pmatrix} \mathbf{a}$$

If we let $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ the above can be rewritten as: $a_1 + a_2 + 0a_3 = 0$

$$a_1 + a_2 + 0a_3 = 0$$

 $0a_1 + 3a_2 + 0a_3 = -3 \implies a_2 = -1$
 $0a_1 + 0a_2 + 2a_3 = 0 \implies a_3 = 0$

Substituting $a_2 = -1$ into the first equation we get $a_1 = 1$. So:

$$\mathbf{a} = \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix}$$

This determines a particular solution:

$$\mathbf{x}_p = \mathbf{a} + \mathbf{b}t$$
$$= \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix} + \begin{pmatrix} 0\\ 1\\ 1 \end{pmatrix} t$$

Putting everything together, the general solution is given by:

$$\mathbf{x}(t) = \mathbf{x}_h + \mathbf{x}_p$$

= $c_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} e^t + c_2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} e^{2t} + c_3 \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} e^{3t} + \left(\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} t \right)$