Non-homogeneous Systems

Example 1. Find the particular solution to the non-homogeneous system

$$
\mathrm{x}^{\prime}=\left(\begin{array}{cc}
0 & 2 \tag{1}\\
4 & -2
\end{array}\right) \mathrm{x}+\binom{4 t}{-4 t-2}
$$

Solution: Since the non-homogeneous part of the equation

$$
\binom{4 t}{-4 t-2}
$$

is linear the particular solution should have the general form:

$$
\mathbf{x}_{p}(t)=\mathbf{a}+\mathbf{b} t
$$

Substituting into the system (5) we get:

$$
\begin{aligned}
\frac{d}{d t}(\mathbf{a}+\mathbf{b} t) & =\left(\begin{array}{cc}
0 & 2 \\
4 & -2
\end{array}\right)(\mathbf{a}+\mathbf{b} t)+\binom{4 t}{-4 t-2} \\
\mathbf{b} & =\left[\left(\begin{array}{cc}
0 & 2 \\
4 & -2
\end{array}\right) \mathbf{a}+\binom{0}{-2}\right]+\left[\left(\begin{array}{cc}
0 & 2 \\
4 & -2
\end{array}\right) \mathbf{b}+\binom{4}{-4}\right] t
\end{aligned}
$$

Equate components:

$$
\begin{aligned}
\mathbf{b} & =\left[\left(\begin{array}{cc}
0 & 2 \\
4 & -2
\end{array}\right) \mathbf{a}+\binom{0}{-2}\right] \\
\mathbf{0} & =\left[\left(\begin{array}{cc}
0 & 2 \\
4 & -2
\end{array}\right) \mathbf{b}+\binom{4}{-4}\right]
\end{aligned}
$$

Rearrange the second matrix equation to:

$$
\left(\begin{array}{cc}
0 & 2 \\
4 & -2
\end{array}\right) \mathbf{b}=\binom{-4}{4}
$$

Solving we get:

$$
\mathbf{b}=\binom{0}{-2}
$$

Substitute back into the first equation:

$$
\binom{0}{-2}=\left(\begin{array}{cc}
0 & 2 \\
4 & -2
\end{array}\right) \mathbf{a}+\binom{0}{-2}
$$

and rearrange:

$$
\left(\begin{array}{cc}
0 & 2 \\
4 & -2
\end{array}\right) \mathbf{a}=\binom{0}{0}
$$

Solving we get:

$$
\mathbf{a}=\binom{0}{0}
$$

So the particular solution is given by:

$$
\begin{aligned}
\mathbf{x}_{p}(t) & =\mathbf{a}+\mathbf{b} t \\
& =\binom{0}{0}+\binom{0}{-2} t=\binom{0}{-2 t}
\end{aligned}
$$

Example 2. This is Question 9 on the practice final (found here)
Find the general solution for the system:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{lll}
1 & 1 & 0 \tag{2}\\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right) \mathbf{x}+\left(\begin{array}{c}
-t \\
4-3 t \\
1-2 t
\end{array}\right)
$$

Solution: The general solution \mathbf{x} to any non-homogeneous system as above is always a sum of the homogeneous solution \mathbf{x}_{h} and a particular solution x_{p}

$$
\begin{equation*}
\mathbf{x}=\mathbf{x}_{h}+\mathbf{x}_{p} \tag{3}
\end{equation*}
$$

The homogeneous solution \mathbf{x}_{h} is calculated by solving the system:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{lll}
1 & 1 & 0 \tag{4}\\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right) \mathbf{x}
$$

To find a particular solution \mathbf{x}_{p} we can use the method of undetermined coefficients. Since the vector function

$$
\left(\begin{array}{l}
-t \\
4-3 t \\
1-2 t
\end{array}\right)=\left(\begin{array}{l}
0 \\
4 \\
1
\end{array}\right)+\left(\begin{array}{l}
-1 \\
-3 \\
-2
\end{array}\right) t
$$

in (2) is linear (no powers of t greater than 1), the general form of a particular solution is given by:

$$
\mathbf{x}_{p}=\mathbf{a}+\mathbf{b} t
$$

for some vectors \mathbf{a}, \mathbf{b}. By substituting this into (2) we can solve for \mathbf{a} and b.

Finding the homogeneous solution:

The general homogeneous solution \mathbf{x}_{h} is the general solution to the system (4).

To calculate the eigenvalues of $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2\end{array}\right)$ we determine the characteristic equation:

$$
\operatorname{det}\left(\begin{array}{ccc}
1-r & 1 & 0 \\
0 & 3-r & 0 \\
0 & 0 & 2-r
\end{array}\right)=0
$$

Calculating the determinant on the left hand side (by expanding along the first column) we get:
$\operatorname{det}\left(\begin{array}{ccc}1-r & 1 & 0 \\ 0 & 3-r & 0 \\ 0 & 0 & 2-r\end{array}\right)=(1-r) \cdot \operatorname{det}\left(\begin{array}{cc}3-r & 0 \\ 0 & 2-r\end{array}\right)=(1-r)(3-r)(2-r)=0$

So we have 3 distinct eigenvalues

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=2 \\
& r_{3}=3
\end{aligned}
$$

Calculating eigenvalue $\mathbf{u}_{\mathbf{1}}$ (corresponding to $r_{1}=1$):
\mathbf{u}_{1} is any non-zero solution to the matrix equation:

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

(notice 1 subtracted from the leading diagonal)
Equivalently this can be rewritten as a system of equations:

$$
\begin{aligned}
0 a+b+0 c & =0 \Longrightarrow b=0 \\
0 a+2 b+0 c & =0 \\
0 a+0 b+c & =0 \Longrightarrow c=0
\end{aligned}
$$

Using the above:

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
a \\
0 \\
0
\end{array}\right)=a\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Let $a=1$ to get

$$
\mathbf{u}_{\mathbf{1}}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Calculating eigenvalue $\mathbf{u}_{\mathbf{2}}$ (corresponding to $r_{2}=2$):
$\mathbf{u}_{\mathbf{2}}$ is any non-zero solution to:

$$
\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

(notice 2 subtracted from the leading diagonal)
Equivalently this can be rewritten as a system of equations:

$$
\begin{aligned}
-a+b+0 c & =0 \Longrightarrow a=b \\
0 a+b+0 c & =0 \Longrightarrow b=0 \\
0 a+0 b+0 c & =0
\end{aligned}
$$

Using the above:

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
c
\end{array}\right)=c\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Let $c=1$ to get

$$
\mathbf{u}_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Calculating eigenvalue $\mathbf{u}_{\mathbf{3}}$ (corresponding to $r_{3}=3$):
\mathbf{u}_{3} is any non-zero solution to (notice 3 subtracted from the leading diagonal):

$$
\left(\begin{array}{ccc}
-2 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

The method of row reduction can be used to solve this. Reference
Equivalently this can be rewritten as a system of equations:

$$
\begin{aligned}
-2 a+b+0 c & =0 \Longrightarrow b=2 a \\
0 a+0 b+0 c & =0 \\
0 a+0 b-c & =0 \Longrightarrow c=0
\end{aligned}
$$

Using the above:

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
a \\
2 a \\
0
\end{array}\right)=a\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)
$$

Let $a=1$ to get

$$
\mathbf{u}_{3}=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)
$$

The homogeneous solution is given by:

$$
\begin{aligned}
\mathbf{x}_{h}(t) & =c_{1} \mathbf{u}_{1} e^{r_{1} t}+c_{2} \mathbf{u}_{2} e^{r_{2} t}+c_{3} \mathbf{u}_{3} e^{r_{3} t} \\
& =c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{t}+c_{2}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) e^{2 t}+c_{3}\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right) e^{3 t}
\end{aligned}
$$

Finding a particular solution:

For the particular solution we substitute the guess $\mathbf{x}_{p}=\mathbf{a}+\mathbf{b} t$ into (2). We get:

$$
\begin{aligned}
\frac{d}{d t}(\mathbf{a}+\mathbf{b} t) & =\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right)(\mathbf{a}+\mathbf{b} t)+\left(\begin{array}{c}
-t \\
4-3 t \\
1-2 t
\end{array}\right) \\
\mathbf{b} & \left.=\left[\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right) \mathbf{a}+\left(\begin{array}{l}
0 \\
4 \\
1
\end{array}\right)\right]+\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right) \mathbf{b}+\left(\begin{array}{l}
-1 \\
-3 \\
-2
\end{array}\right)\right] t
\end{aligned}
$$

On the right hand side of the second line I distributed the matrix products and separated the expression into two components: constants and multiples of t.

Comparing components on the two sides of the equation we get:

$$
\begin{align*}
& \mathbf{b}=\left[\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right) \mathbf{a}+\left(\begin{array}{l}
0 \\
4 \\
1
\end{array}\right)\right] \\
& \mathbf{0}=\left[\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right) \mathbf{b}+\left(\begin{array}{l}
-1 \\
-3 \\
-2
\end{array}\right)\right] \tag{5}
\end{align*}
$$

Rearranging the second equation of (5) we get:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right) \mathbf{b}=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)
$$

If we let $\mathbf{b}=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ the above matrix equation represents the simultaneous equations:

$$
\begin{aligned}
b_{1}+b_{2}+0 b_{3} & =1 \\
0 b_{1}+3 b_{2}+0 b_{3} & =3 \Longrightarrow b_{2}=1 \\
0 b_{1}+0 b_{2}+2 b_{3} & =2 \Longrightarrow b_{3}=1
\end{aligned}
$$

Substituting $b_{2}=1$ into the first equation we get $b_{1}=0$. So:

$$
\mathbf{b}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

Now we can substitute \mathbf{b} into the first equation of (5):

$$
\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right) \mathbf{a}+\left(\begin{array}{l}
0 \\
4 \\
1
\end{array}\right)
$$

Rearrange:

$$
\left(\begin{array}{c}
0 \\
-3 \\
0
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right) \mathbf{a}
$$

If we let $\mathbf{a}=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$ the above can be rewritten as:

$$
\begin{aligned}
a_{1}+a_{2}+0 a_{3} & =0 \\
0 a_{1}+3 a_{2}+0 a_{3} & =-3 \Longrightarrow a_{2}=-1 \\
0 a_{1}+0 a_{2}+2 a_{3} & =0 \Longrightarrow a_{3}=0
\end{aligned}
$$

Substituting $a_{2}=-1$ into the first equation we get $a_{1}=1$. So:

$$
\mathbf{a}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
$$

This determines a particular solution:

$$
\begin{aligned}
\mathbf{x}_{p} & =\mathbf{a}+\mathbf{b} t \\
& =\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) t
\end{aligned}
$$

Putting everything together, the general solution is given by:

$$
\begin{aligned}
\mathbf{x}(t) & =\mathbf{x}_{h}+\mathbf{x}_{p} \\
& =c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{t}+c_{2}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) e^{2 t}+c_{3}\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right) e^{3 t}+\left(\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) t\right)
\end{aligned}
$$

