Separable Equations

The first non-trivial examples of differential equations we will learn to solve are called separable. The main idea in solving these equations is to separate variables then integrate respectively.

Definition:

A first-order differential equation of the form

$$
\frac{d y}{d x}=f(x, y)
$$

is called separable if the right hand side function $f(x, y)$ can be written as a product

$$
f(x, y)=g(x) h(y)
$$

where g and h are functions of x only and y only respectively.
Some examples of separable and non-separable equations (by no means an exhaustive list):

Separable	Non-separable
$\frac{d x}{d t}=x^{2} t^{2}$	$\frac{d x}{d t}=x^{2}+t^{2}$
$\frac{d x}{d t}=\frac{y t}{\sqrt{1-t}}$	$\frac{d x}{d t}=\frac{y t}{\sqrt{y-t}}$
$\frac{d y}{d x}=e^{2 x+3 y}$	$\frac{d y}{d x}=\log (2 x+3 y)$
$\frac{d r}{d \theta}=\frac{r\left(e^{\theta}+3\right)}{5 r \theta}$	$\frac{d r}{d \theta}=\frac{3\left(e^{\theta}+r\right)}{5 r \theta}$
$\frac{d y}{d x}=x y+y+x+1$	$\frac{d y}{d x}=x y+y+x$

Solution algorithm:

1. Rewrite your differential equation into the following separated form (if necessary):

$$
\begin{equation*}
\frac{d y}{d x}=g(x) \cdot h(y) \tag{1}
\end{equation*}
$$

2. Multiply (1) by $d x$ and divide by $h(y)$ to get

$$
\begin{equation*}
\frac{d y}{h(y)}=g(x) \cdot d x \tag{2}
\end{equation*}
$$

3. The (implicit) solution is given by integrating (2) (don't forget $+C$ on the right hand side)

$$
\int \frac{d y}{h(y)}=\int g(x) \cdot d x+C
$$

4. If given an initial condition, solve for C

Example (2.2.13). Solve the equation

$$
\begin{equation*}
\frac{d y}{d x}=3 x^{2}\left(1+y^{2}\right)^{3 / 2} \tag{3}
\end{equation*}
$$

Solution: First we verify that this is a separable equation. This is easily seen to be the case with $g(x)=3 x^{2}$ and $h(y)=\left(1+y^{2}\right)^{3 / 2}$

Rearranging (3) we get:

$$
\frac{d y}{\left(1+y^{2}\right)^{3 / 2}}=3 x^{2} d x
$$

Integrate both sides:

$$
\begin{equation*}
\int \frac{d y}{\left(1+y^{2}\right)^{3 / 2}}=\int 3 x^{2} d x+C \tag{4}
\end{equation*}
$$

To evaluate (4) we need to calculate the left hand side which is a tricky integral. Fortunately it can be made easier with a substitution. Applying the substitution $y=\tan (u)$ we transform the integral in y into an integral in u in the following way:

$$
\int \frac{d y}{\left(1+y^{2}\right)^{3 / 2}} \longmapsto \int \frac{d u \cdot \sec ^{2}(u)}{\sec ^{3}(u)}
$$

Simplifying:

$$
\int \frac{d u \cdot \sec ^{2}(u)}{\sec ^{3}(u)}=\int \cos (u) d u=\sin (u)
$$

We need to rewrite this as a function of y. Since $y=\tan (u)$ we have $u=\arctan (y)$, and so:

$$
\sin (u)=\sin (\arctan (y))
$$

We can go much further in simplifying this complicated trigonometric function. Notice that:

$$
y=\tan (u) \Longrightarrow y^{2}=\tan ^{2}(u)=\sec ^{2}(u)-1
$$

Rearranging we get:

$$
\sec ^{2}(u)=y^{2}+1
$$

So:

$$
\begin{equation*}
\cos ^{2}(u)=\frac{1}{y^{2}+1} \tag{5}
\end{equation*}
$$

Sine and cosine are related by the formula:

$$
\begin{equation*}
\sin ^{2}(u)+\cos ^{2}(u)=1 \tag{6}
\end{equation*}
$$

Using (5) and (6) we get:

$$
\begin{aligned}
\sin (u) & =\sqrt{1-\cos ^{2}(u)} \\
& =\sqrt{\frac{y^{2}}{y^{2}+1}} \\
& =\sqrt{1-\frac{1}{y^{2}+1}} \\
& =\frac{y}{\sqrt{y^{2}+1}}
\end{aligned}
$$

This lets us finally calculate the left hand side of (4) to get the (implicit) solution.

$$
\begin{equation*}
\frac{y}{\sqrt{y^{2}+1}}-x^{3}=C \tag{7}
\end{equation*}
$$

(We have no given initial condition so we cannot solve for C)
Example (2.2.22). Solve the initial value problem

$$
\begin{equation*}
x^{2} d x+2 y d y=0, \quad y(0)=2 \tag{8}
\end{equation*}
$$

Solution: This problem is not stated in the standard $\frac{d y}{d x}=f(x, y)$ form, but notice that it is still separated (in fact this is more of less the equation we expect at the end of step 2). We rearrange:

$$
2 y d y=-x^{2} d x
$$

and integrate:

$$
\int 2 y d y=\int-x^{2} d x+C
$$

Calculating we get:

$$
y^{2}=-\frac{1}{3} x^{3}+C
$$

Using the initial condition we can calculate C by substituting $x=0, y=2$

$$
(2)^{2}=-\frac{1}{3}(0)^{3}+C \Longrightarrow C=4
$$

The (implicit) solution to (8) is then given by:

$$
\begin{equation*}
y^{2}=4-\frac{1}{3} x^{3} \tag{9}
\end{equation*}
$$

Going further we can take the square root:

$$
y= \pm \sqrt{4-\frac{1}{3} x^{3}}
$$

The initial condition $y(0)=2$ forces us to take the positive square root here to get the explicit solution:

$$
\begin{equation*}
y=\sqrt{4-\frac{1}{3} x^{3}} \tag{10}
\end{equation*}
$$

