Homogeneous systems of differential equations (with real eigenvalues)

The solutions to a homogeneous system of differential equations

$$
\begin{equation*}
\mathbf{x}^{\prime}=A \mathbf{x} \tag{1}
\end{equation*}
$$

(where A is a matrix with real eigenvalues) always have the form:

$$
\mathbf{x}=\mathbf{u} e^{r t}
$$

where r is an eigenvalue of A and \mathbf{u} is its corresponding eigenvector. So each eigenvalue eigenvector pair determines a solution. If A is a 2×2 matrix we expect to get 2 solutions (corresponding to each eigenvalue) and if A is 3×3 we except to get 3 .

The general solution then is given by:

$$
\begin{equation*}
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2} \tag{2}
\end{equation*}
$$

(when A is a 2×2 matrix) or by

$$
\begin{equation*}
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+c_{3} \mathbf{x}_{3} \tag{3}
\end{equation*}
$$

(when A is a 3×3 matrix)
To solve system (1) we use the following algorithm:

Solution Algorithm:

1. Calculate the eigenvalues of A by solving the characteristic equation:

$$
\operatorname{det}(A-r I)=0
$$

Note: This step requires you to calculate the determinant of a matrix.
2. Calculate the eigenvectors of A by solving the homogeneous matrix equation

$$
(A-r I) \mathbf{u}=\mathbf{0}
$$

for \mathbf{u} by row reduction.
Note: Alternatively you can rewrite $(A-r I) \mathbf{u}=\mathbf{0}$ as a system of simultaneous equations and solve by hand (there are examples of this in the handout).
3. Write down the general solution as in (2) or (3) (depending whether A is a 2×2 or 3×3 matrix).
4. (If given) use the initial condition $\mathbf{x}\left(t_{0}\right)=\mathbf{b}$ to solve for c_{1}, c_{2}, and c_{3} (if A is 3×3).

Note: This step requires you to solve the non-homogeneous matrix equation $A \mathbf{c}=\mathbf{b}$ for \mathbf{c}, or alternatively you can rewrite $A \mathbf{c}=\mathbf{b}$ as a system of simultaneous equations and solve that by hand. See Examples 2 and 4.

Worked Examples:

Example 1. Find a general solution of the system

$$
\mathrm{x}^{\prime}=\left(\begin{array}{ll}
2 & -1 \tag{4}\\
3 & -2
\end{array}\right) \mathrm{x}
$$

Solution: Step 1: Find eigenvalues

First we need to find the eigenvalues of $\left(\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right)$, so set up the characteristic equation:

$$
\operatorname{det}\left(\begin{array}{cc}
2-r & -1 \\
3 & -2-r
\end{array}\right)=0
$$

Calculating the determinant we get $(2-r)(-2-r)+3=0$ which simplifies to $r^{2}-1=0$. Solving we get the eigenvalues $r_{1}=1$ and $r_{2}=-1$.

Step 2: Find eigenvectors

Calculating eigenvector \mathbf{u}_{1} associated to $r_{1}=1$:

$\mathbf{u}_{\mathbf{1}}$ is calculated as any (non-zero) solution to the matrix equation:

$$
\left(A-r_{1} \cdot I\right) \mathbf{u}=\mathbf{0}
$$

Since $r_{1}=1$ we have:

$$
A-1 \cdot I=\left(\begin{array}{ll}
1 & -1 \\
3 & -3
\end{array}\right)
$$

And so we want to solve the matrix equation:

$$
\left(\begin{array}{ll}
1 & -1 \\
3 & -3
\end{array}\right)\binom{a}{b}=\binom{0}{0}
$$

This is equivalent to the simultaneous equations:

$$
\begin{array}{r}
a-b=0 \\
3 a-3 b=0
\end{array}
$$

From the first equation we get $b=a$, so we can rewrite $\mathbf{u}=\binom{a}{b}$ as:

$$
\mathbf{u}=\binom{a}{b}=\binom{a}{a}=a\binom{1}{1}
$$

Any choice of a (except $a=0$) will give us an eigenvector, since there are no fractions to cancel let $a=1$ to get:

$$
\mathbf{u}_{1}=\binom{1}{1}
$$

Calculating eigenvector $\mathbf{u}_{\mathbf{2}}$ associated to $r_{2}=-1$:

Similarly we find $\mathbf{u}_{\mathbf{2}}$ by solving the matrix equation:

$$
\left(A-r_{2} \cdot I\right) \mathbf{u}=\mathbf{0}
$$

Since $r_{2}=-1$ we have:

$$
A-(-1) \cdot I=\left(\begin{array}{ll}
3 & -1 \\
3 & -1
\end{array}\right)
$$

So again we want to solve a matrix equation:

$$
\left(\begin{array}{ll}
3 & -1 \\
3 & -1
\end{array}\right)\binom{a}{b}=\binom{0}{0}
$$

This is equivalent to the simultaneous equations:

$$
\begin{aligned}
& 3 a-b=0 \\
& 3 a-b=0
\end{aligned}
$$

Rearranging the first equation we get $b=3 a$, so we can rewrite $\mathbf{u}=\binom{a}{b}$ as:

$$
\mathbf{u}=\binom{a}{b}=\binom{a}{3 a}=a\binom{1}{3}
$$

Any choice of a (except $a=0$) will give us an eigenvector, since there are no fractions to cancel let $a=1$ to get:

$$
\mathbf{u}_{2}=\binom{1}{3}
$$

The general solution is then given by:

$$
\mathbf{x}(t)=c_{1} \mathbf{u}_{\mathbf{1}} e^{r_{1} t}+c_{2} \mathbf{u}_{\mathbf{2}} e^{r_{2} t}
$$

Substituting the constants we calculated above we get:

$$
\mathbf{x}(t)=c_{1}\binom{1}{1} e^{t}+c_{2}\binom{1}{3} e^{-t}
$$

This can also be rewritten as:

$$
\mathbf{x}(t)=\left(\begin{array}{cc}
e^{t} & e^{-t} \\
e^{t} & 3 e^{-t}
\end{array}\right)\binom{c_{1}}{c_{2}}
$$

Recall: $\left(\begin{array}{cc}e^{t} & e^{-t} \\ e^{t} & 3 e^{-t}\end{array}\right)$ is the fundamental matrix.
We do not have any initial conditions so we cannot determine $\binom{c_{1}}{c_{2}}$
Example 2 (9.5.31). Solve the initial value problem

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 3 \tag{5}\\
3 & 1
\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\binom{3}{1}
$$

Solution: Step 1: Find eigenvalues

First we find the eigenvalues of $\left(\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right)$
Set up the characteristic equation:

$$
\operatorname{det}\left(\begin{array}{cc}
1-r & 3 \\
3 & 1-r
\end{array}\right)=0
$$

Calculating the determinant we get $r^{2}-2 r-8=0$, which simplifies to $r^{2}-2 r-8=0$. Solving for r we get the eigenvalues $r_{1}=4$ and $r_{2}=-2$.

Step 2: Find eigenvectors

Calculating eigenvector $\mathbf{u}_{\mathbf{1}}$ associated to $r_{1}=4$:
$\mathbf{u}_{\mathbf{1}}$ is any (non-zero) solution to $(A-4 \cdot I) \mathbf{u}=\mathbf{0}$,

$$
A-4 \cdot I=\left(\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right)
$$

So we want to solve

$$
\left(\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right)\binom{a}{b}=\binom{0}{0}
$$

This is equivalent to the simultaneous equations:

$$
\begin{array}{r}
-3 a+3 b=0 \\
3 a-3 b=0
\end{array}
$$

Rearranging the first equation we get $a=b$, so we can rewrite $\mathbf{u}=\binom{a}{b}$ as:

$$
\mathbf{u}=\binom{a}{b}=\binom{b}{b}=b\binom{1}{1}
$$

Any choice of b (except $b=0$) will give us an eigenvector, since there are no fractions to cancel let $b=1$ to get:

$$
\mathbf{u}_{1}=\binom{1}{1}
$$

Calculating eigenvector u_{2} associated to $r_{2}=-2$:
$\mathbf{u}_{\mathbf{2}}$ is the solution to $(A-(-2) \cdot I) \mathbf{u}=\mathbf{0}$,

$$
A-(-2) \cdot I=\left(\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right)
$$

So we want to solve

$$
\left(\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right)\binom{a}{b}=\binom{0}{0}
$$

This is equivalent to the simultaneous equations:

$$
\begin{aligned}
& 3 a+3 b=0 \\
& 3 a+3 b=0
\end{aligned}
$$

Rearranging the first equation we get $a=-b$, so we can rewrite $\mathbf{u}=\binom{a}{b}$ as:

$$
\mathbf{u}=\binom{a}{b}=\binom{-b}{b}=b\binom{-1}{1}
$$

Any choice of b (except $b=0$) will give us an eigenvector, since there are no fractions to cancel let $b=1$ to get:

$$
\mathbf{u}_{\mathbf{2}}=\binom{-1}{1}
$$

The general solution is given by:

$$
\mathbf{x}(t)=c_{1}\binom{1}{1} e^{4 t}+c_{2}\binom{1}{-1} e^{-2 t}
$$

This can also be rewritten as:

$$
\mathbf{x}(t)=\left(\begin{array}{cc}
e^{4 t} & e^{-2 t} \tag{6}\\
e^{4 t} & -e^{-2 t}
\end{array}\right)\binom{c_{1}}{c_{2}}
$$

We can use the initial condition $\mathbf{x}(0)=\binom{3}{1}$ to calculate $\binom{c_{1}}{c_{2}}$ by substituting $t=0$ into (6) we get:

$$
\binom{3}{1}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{c_{1}}{c_{2}}
$$

This is equivalent to the simultaneous equations:

$$
\begin{align*}
& c_{1}+c_{2}=3 \tag{7}\\
& c_{1}-c_{2}=1
\end{align*}
$$

We can use row reduction to solve this matrix equation or just solve it by hand.

Solving by row reduction:

Set up an augmented matrix and reduce:

$$
\begin{aligned}
\left(\begin{array}{cc|c}
1 & 1 & 3 \\
1 & -1 & 1
\end{array}\right) & \longrightarrow\left(\begin{array}{cc|c}
1 & 1 & 3 \\
0 & -2 & -2
\end{array}\right) \quad\left(R_{2} \longmapsto R_{2}-R_{1}\right) \\
\left(\begin{array}{cc|c}
1 & 1 & 3 \\
0 & -2 & -2
\end{array}\right) & \longrightarrow\left(\begin{array}{cc|c}
1 & 1 & 3 \\
0 & 1 & 1
\end{array}\right) \quad\left(R_{2} \longmapsto-\frac{1}{2} \cdot R_{2}\right) \\
\left(\begin{array}{cc|c}
1 & 1 & 3 \\
0 & 1 & 1
\end{array}\right) & \longrightarrow\left(\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right) \quad\left(R_{1} \longmapsto R_{1}-R_{2}\right)
\end{aligned}
$$

Now we can just read off the solution from the last column:

$$
\binom{c_{1}}{c_{2}}=\binom{2}{1}
$$

Solving by hand:

We can subtract the second equation of (7) from the first to get:

$$
2 c_{2}=2 \Longrightarrow c_{2}=1
$$

Now substitute $c_{2}=1$ back into the first equation to get:

$$
c_{1}=2
$$

So the solution to (5) is:

$$
\begin{aligned}
\mathbf{x}(t) & =2\binom{1}{1} e^{4 t}+1\binom{1}{-1} e^{-2 t} \\
& =\binom{2 e^{4 t}+e^{-2 t}}{2 e^{4 t}-e^{-2 t}}
\end{aligned}
$$

Example 3 (9.5.15). Find a general solution of the system

$$
\mathbf{x}^{\prime}=\left(\begin{array}{lll}
1 & 2 & 3 \tag{8}\\
0 & 1 & 0 \\
2 & 1 & 2
\end{array}\right) \mathbf{x}
$$

Solution: Step 1: Finding eigenvalues

The characteristic equation is given by:

$$
\operatorname{det}\left(\begin{array}{ccc}
1-r & 2 & 3 \\
0 & 1-r & 0 \\
2 & 1 & 2-r
\end{array}\right)=0
$$

Calculating the determinant along the second row we get:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ccc}
1-r & 2 & 3 \\
0 & 1-r & 0 \\
2 & 1 & 2-r
\end{array}\right) & =(1-r) \cdot \operatorname{det}\left(\begin{array}{cc}
1-r & 3 \\
2 & 2-r
\end{array}\right) \\
& =(1-r)[(1-r)(2-r)-6] \\
& =(1-r)\left(r^{2}-3 r-4\right) \\
& =(1-r)(r+1)(r-4)
\end{aligned}
$$

So we get 3 eigenvalues as solutions $r_{1}=1, r_{2}=-1, r_{3}=4$ to

$$
(1-r)(r-4)(r+1)=0
$$

Step 2: Finding eigenvectors

\mathbf{u}_{1} (associated to $r_{1}=1$) is calculated by solving:

$$
\left(\begin{array}{lll}
0 & 2 & 3 \\
0 & 0 & 0 \\
2 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

This is equivalent to the simultaneous equations:

$$
\begin{align*}
0 a+2 b+3 c & =0 \\
0 a+0 b+0 c & =0 \tag{9}\\
2 a+b+c & =0
\end{align*}
$$

Solving by row reduction:

Determine the augmented matrix:

$$
(A \mid \mathbf{0})=\left(\begin{array}{lll|l}
0 & 2 & 3 & 0 \\
0 & 0 & 0 & 0 \\
2 & 1 & 1 & 0
\end{array}\right)
$$

Apply row operations:

$$
\begin{aligned}
\left(\begin{array}{lll|l}
0 & 2 & 3 & 0 \\
0 & 0 & 0 & 0 \\
2 & 1 & 1 & 0
\end{array}\right) & \longrightarrow\left(\begin{array}{lll|l}
2 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 2 & 3 & 0
\end{array}\right) \quad\left(R_{1} \longleftrightarrow R_{3}\right) \\
\left(\begin{array}{lll|l}
2 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 2 & 3 & 0
\end{array}\right) & \longrightarrow\left(\begin{array}{lll|l}
2 & 1 & 1 & 0 \\
0 & 2 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(R_{2} \longleftrightarrow R_{3}\right) \\
\left(\begin{array}{lll|l}
2 & 1 & 1 & 0 \\
0 & 2 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) & \longrightarrow\left(\begin{array}{ccc|c}
1 & 1 / 2 & 1 / 2 & 0 \\
0 & 1 & 3 / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(R_{1} \longmapsto \frac{1}{2} \cdot R_{1}\right) \text { and }\left(R_{2} \longmapsto \frac{1}{2} \cdot R_{2}\right) \\
\left(\begin{array}{ccc|c}
1 & 1 / 2 & 1 / 2 & 0 \\
0 & 1 & 3 / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) & \longrightarrow\left(\begin{array}{ccc|c}
1 & 0 & -1 / 4 & 0 \\
0 & 1 & 3 / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(R_{1} \longmapsto R_{1}-\frac{1}{2} \cdot R_{2}\right)
\end{aligned}
$$

Rewrite as a system of equations and solve:

$$
\begin{aligned}
a-\frac{1}{4} c=0 & \Longrightarrow a=\frac{1}{4} c \\
b+\frac{3}{2} c=0 & \Longrightarrow b=-\frac{3}{2} c
\end{aligned}
$$

Write down the solution:

$$
\mathbf{u}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
1 / 4 \cdot c \\
-3 / 2 \cdot c \\
1 \cdot c
\end{array}\right)=c\left(\begin{array}{c}
1 / 4 \\
-3 / 2 \\
1
\end{array}\right)
$$

Solving by hand:

Rearranging the first equation of (9) we get:

$$
2 b=-3 c \Longrightarrow b=-\frac{3}{2} c
$$

Substitute into the last equation to get:

$$
2 a+\left(-\frac{3}{2} c\right)+c=0 \Longrightarrow 2 a-\frac{1}{2} c=0 \Longrightarrow a=\frac{1}{4} c
$$

Write down the solution:

$$
\mathbf{u}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
1 / 4 \cdot c \\
-3 / 2 \cdot c \\
1 \cdot c
\end{array}\right)=c\left(\begin{array}{c}
1 / 4 \\
-3 / 2 \\
1
\end{array}\right)
$$

Any non-zero choice of c will give us an eigenvector, to cancel fractions let $c=4$ to get:

$$
\mathbf{u}_{\mathbf{1}}=\left(\begin{array}{c}
1 \\
-6 \\
4
\end{array}\right)
$$

$\mathbf{u}_{\mathbf{2}}$ (associated to $r_{2}=-1$) is calculated by solving:

$$
\left(\begin{array}{lll}
2 & 2 & 3 \\
0 & 2 & 0 \\
2 & 1 & 3
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

This is equivalent to the simultaneous equations:

$$
\begin{array}{r}
2 a+2 b+3 c=0 \\
0 a+2 b+0 c=0 \tag{10}\\
2 a+b+3 c=0
\end{array}
$$

Solving by row reduction:

Determine the augmented matrix:

$$
(A \mid \mathbf{0})=\left(\begin{array}{lll|l}
2 & 2 & 3 & 0 \\
0 & 2 & 0 & 0 \\
2 & 1 & 3 & 0
\end{array}\right)
$$

Apply row operations:

$$
\begin{aligned}
\left(\begin{array}{lll|l}
2 & 2 & 3 & 0 \\
0 & 2 & 0 & 0 \\
2 & 1 & 3 & 0
\end{array}\right) & \rightarrow\left(\begin{array}{ccc|c}
2 & 2 & 3 & 0 \\
0 & 2 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) \quad\left(R_{3} \longmapsto R_{3}-R_{1}\right) \\
\left(\begin{array}{ccc|c}
2 & 2 & 3 & 0 \\
0 & 2 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) & \longrightarrow\left(\begin{array}{ccc|c}
1 & 1 & 3 / 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) \quad\left(R_{1} \longmapsto \frac{1}{2} \cdot R_{1}\right) \text { and }\left(R_{2} \longmapsto \frac{1}{2} \cdot R_{2}\right) \\
\left(\begin{array}{ccc|c}
1 & 1 & 3 / 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) & \longrightarrow\left(\begin{array}{ccc|c}
1 & 0 & 3 / 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(R_{1} \longmapsto R_{1}-R_{2}\right) \text { and }\left(R_{3} \longmapsto R_{3}+R_{2}\right)
\end{aligned}
$$

Rewrite as a system of equations and solve:

$$
\begin{aligned}
a+\frac{3}{2} c=0 & \Longrightarrow a=-\frac{3}{2} c \\
b=0 & \Longrightarrow b=0 c
\end{aligned}
$$

Write down the solution:

$$
\mathbf{u}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
-3 / 2 \cdot c \\
0 \cdot c \\
1 \cdot c
\end{array}\right)=c\left(\begin{array}{c}
-3 / 2 \\
0 \\
1
\end{array}\right)
$$

Solving by hand:

The second equation of (10) immediately gives $b=0$.
Substituting into the first equation we get:

$$
2 a+2(0)+3 c=0 \Longrightarrow a=-\frac{3}{2} c
$$

Write down the solution:

$$
\mathbf{u}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
-\frac{3}{2} c \\
0 \\
c
\end{array}\right)=c\left(\begin{array}{c}
-\frac{3}{2} \\
0 \\
1
\end{array}\right)
$$

Any non-zero choice of c will give us an eigenvector, to cancel fractions let $c=2$ to get:

$$
\mathbf{u}_{\mathbf{2}}=\left(\begin{array}{c}
-3 \\
0 \\
2
\end{array}\right)
$$

$\mathbf{u}_{\mathbf{3}}$ (associated to $r_{3}=4$) is calculated by solving:

$$
\left(\begin{array}{ccc}
-3 & 2 & 3 \\
0 & -3 & 0 \\
2 & 1 & -2
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

This is equivalent to the simultaneous equations:

$$
\begin{array}{r}
-3 a+2 b+3 c=0 \\
0 a-3 b+0 c=0 \tag{11}\\
2 a+b-2 c=0
\end{array}
$$

Solving by row reduction:

Determine the augmented matrix:

$$
(A \mid \mathbf{0})=\left(\begin{array}{ccc|c}
-3 & 2 & 3 & 0 \\
0 & -3 & 0 & 0 \\
2 & 1 & -2 & 0
\end{array}\right)
$$

Apply row operations:

$$
\begin{aligned}
\left(\begin{array}{ccc|c}
-3 & 2 & 3 & 0 \\
0 & -3 & 0 & 0 \\
2 & 1 & -2 & 0
\end{array}\right) & \longrightarrow\left(\begin{array}{ccc|c}
1 & 4 & -1 & 0 \\
0 & 1 & 0 & 0 \\
2 & 1 & -2 & 0
\end{array}\right) \quad\left(R_{1} \longmapsto R_{1}+2 \cdot R_{3}\right) \text { and }\left(R_{2} \longmapsto-\frac{1}{3} \cdot R_{2}\right) \\
\left(\begin{array}{ccc|c}
1 & 4 & -1 & 0 \\
0 & 1 & 0 & 0 \\
2 & 1 & -2 & 0
\end{array}\right) & \longrightarrow\left(\begin{array}{ccc|c}
1 & 4 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & -7 & 0 & 0
\end{array}\right) \quad\left(R_{3} \longmapsto R_{3}-2 \cdot R_{3}\right) \\
\left(\begin{array}{ccc|c}
1 & 4 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & -7 & 0 & 0
\end{array}\right) & \longrightarrow\left(\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(R_{1} \longmapsto R_{1}-4 \cdot R_{2}\right) \text { and }\left(R_{3} \longmapsto R_{3}+7 \cdot R_{2}\right)
\end{aligned}
$$

Rewrite as a system of equations and solve:

$$
\begin{aligned}
a-c=0 & \Longrightarrow a=c \\
b=0 & \Longrightarrow b=0 \cdot c
\end{aligned}
$$

Write down the solution:

$$
\mathbf{u}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
1 \cdot c \\
0 \cdot c \\
1 \cdot c
\end{array}\right)=c\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

Solving by hand:

The middle equation of (11) gives $b=0$
Substituting into the first equation we get:

$$
-3 a+(0)+3 c=0 \Longrightarrow a=c
$$

Write down the solution:

$$
\mathbf{u}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
c \\
0 \\
c
\end{array}\right)=c\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

There are no fractions to cancel so let $c=1$ to get:

$$
\mathbf{u}_{\mathbf{3}}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

The general solution is given by:

$$
\mathbf{x}(t)=c_{1}\left(\begin{array}{c}
1 \\
-6 \\
4
\end{array}\right) e^{t}+c_{2}\left(\begin{array}{c}
-3 \\
0 \\
2
\end{array}\right) e^{-t}+c_{3}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) e^{4 t}
$$

This can also be rewritten as:

$$
\mathbf{x}(t)=\left(\begin{array}{ccc}
e^{t} & -3 e^{-t} & e^{4 t} \\
-6 e^{t} & 0 & 0 \\
4 e^{t} & 2 e^{-t} & e^{4 t}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

Example 4 (9.5.33). Solve the initial value problem

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ccc}
1 & -2 & -2 \tag{12}\\
-2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\left(\begin{array}{c}
-2 \\
-3 \\
2
\end{array}\right)
$$

Solution: Step 1: Finding eigenvalues

The characteristic equation is given by:

$$
\operatorname{det}\left(\begin{array}{ccc}
1-r & -2 & -2 \\
-2 & 1-r & -2 \\
2 & -2 & 1-r
\end{array}\right)=0
$$

Calculating the determinant (along the first row) we get:

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
1-r & -2 & -2 \\
-2 & 1-r & -2 \\
2 & -2 & 1-r
\end{array}\right) \\
& =(1-r) \cdot \operatorname{det}\left(\begin{array}{cc}
1-r & -2 \\
-2 & 1-r
\end{array}\right)-(-2) \cdot \operatorname{det}\left(\begin{array}{cc}
-2 & -2 \\
2 & 1-r
\end{array}\right)+(-2) \cdot \operatorname{det}\left(\begin{array}{cc}
-2 & 1-r \\
2 & -2
\end{array}\right) \\
& =(1-r)\left(r^{2}-2 r-3\right)+2(2 r+2)-2(2 r+2) \\
& =(1-r)\left(r^{2}-2 r-3\right) \\
& =(1-r)(r+1)(r-3)
\end{aligned}
$$

So we get 3 eigenvalues as solutions $r_{1}=1, r_{2}=-1, r_{3}=3$ to

$$
(1-r)(r+1)(r-3)=0
$$

Step 2: Finding eigenvectors

$\mathbf{u}_{\mathbf{1}}$ (associated to $r_{1}=1$) is calculated by solving:

$$
\left(\begin{array}{ccc}
0 & -2 & -2 \\
-2 & 0 & -2 \\
2 & -2 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Solving by row reduction:

Write down the augmented matrix:

$$
(A \mid \mathbf{0})=\left(\begin{array}{ccc|c}
0 & -2 & -2 & 0 \\
-2 & 0 & -2 & 0 \\
2 & -2 & 0 & 0
\end{array}\right)
$$

Apply row operations:

$$
\begin{aligned}
\left(\begin{array}{ccc|c}
0 & -2 & -2 & 0 \\
-2 & 0 & -2 & 0 \\
2 & -2 & 0 & 0
\end{array}\right) & \longrightarrow\left(\begin{array}{ccc|c}
2 & -2 & 0 & 0 \\
-2 & 0 & -2 & 0 \\
0 & -2 & -2 & 0
\end{array}\right) \quad\left(R_{1} \longleftrightarrow R_{3}\right) \\
\left(\begin{array}{ccc|c}
2 & -2 & 0 & 0 \\
-2 & 0 & -2 & 0 \\
0 & -2 & -2 & 0
\end{array}\right) & \longrightarrow\left(\begin{array}{ccc|c}
2 & -2 & 0 & 0 \\
0 & -2 & -2 & 0 \\
0 & -2 & -2 & 0
\end{array}\right) \quad\left(R_{2} \longmapsto R_{2}+R_{1}\right) \\
\left(\begin{array}{ccc|c}
2 & -2 & 0 & 0 \\
0 & -2 & -2 & 0 \\
0 & -2 & -2 & 0
\end{array}\right) & \longrightarrow\left(\begin{array}{ccc|c}
2 & -2 & 0 & 0 \\
0 & -2 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(R_{3} \longmapsto R_{3}-R_{2}\right) \\
\left(\begin{array}{ccc|c}
2 & -2 & 0 & 0 \\
0 & -2 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) & \left.\longrightarrow\left(\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(R_{1} \longmapsto \frac{1}{2} \cdot R_{1}\right) \text { and }\left(R_{2} \longmapsto-\frac{1}{2} \cdot R_{2}\right)\right) \\
\left(\begin{array}{lcc|c}
1 & -1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) & \longrightarrow\left(\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(R_{1} \longmapsto R_{1}+R_{2}\right)
\end{aligned}
$$

Rewrite as a system of equations and solve:

$$
\begin{aligned}
a+c=0 & \Longrightarrow a=-c \\
b+c=0 & \Longrightarrow b=-c
\end{aligned}
$$

Write down the solution:

$$
\mathbf{u}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
-c \\
-c \\
c
\end{array}\right)=c\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)
$$

Any non-zero choice of c will give us an eigenvector, there are no fractions to cancel so let $c=1$ to get:

$$
\mathbf{u}_{\mathbf{1}}=\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)
$$

$\mathbf{u}_{\mathbf{2}}$ (associated to $r_{2}=-1$) is calculated by solving:

$$
\left(\begin{array}{ccc}
2 & -2 & -2 \\
-2 & 2 & -2 \\
2 & -2 & 2
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Solving by row reduction:

Write down the augmented matrix:

$$
(A \mid \mathbf{0})=\left(\begin{array}{ccc|c}
2 & -2 & -2 & 0 \\
-2 & 2 & -2 & 0 \\
2 & -2 & 2 & 0
\end{array}\right)
$$

Apply row operations:

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
2 & -2 & -2 & 0 \\
-2 & 2 & -2 & 0 \\
2 & -2 & 2 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{ccc|c}
2 & -2 & -2 & 0 \\
0 & 0 & -4 & 0 \\
0 & 0 & 4 & 0
\end{array}\right) \quad\left(R_{2} \longmapsto R_{2}+R_{1}\right) \text { and }\left(R_{3} \longmapsto R_{3}-R_{1}\right) \\
& \left(\begin{array}{ccc|c}
2 & -2 & -2 & 0 \\
0 & 0 & -4 & 0 \\
0 & 0 & 4 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{ccc|c}
2 & -2 & -2 & 0 \\
0 & 0 & -4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(R_{3} \longmapsto R_{3}+R_{2}\right) \\
& \left(\begin{array}{ccc|c}
2 & -2 & -2 & 0 \\
0 & 0 & -4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{ccc|c}
1 & -1 & -1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(R_{1} \longmapsto \frac{1}{2} \cdot R_{1}\right) \text { and }\left(R_{2} \longmapsto-\frac{1}{4} \cdot R_{2}\right) \\
& \left(\begin{array}{ccc|c}
1 & -1 & -1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \longrightarrow\left(\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(R_{1} \longmapsto R_{1}+R_{2}\right)
\end{aligned}
$$

Rewrite as a system of equations and solve:

$$
\begin{aligned}
a-b & =0 \quad \Longrightarrow a=b \\
c & =0
\end{aligned}
$$

Write down the solution:

$$
\mathbf{u}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
b \\
b \\
0
\end{array}\right)=b\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

Any non-zero choice of b will give us an eigenvector, there is no need to cancel fractions so let $b=1$ to get:

$$
\mathbf{u}_{2}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

$\mathbf{u}_{\mathbf{3}}$ (associated to $r_{3}=3$) is calculated by solving:

$$
\left(\begin{array}{ccc}
-2 & -2 & -2 \\
-2 & -2 & -2 \\
2 & -2 & -2
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Solving by row reduction:

Determine the augmented matrix:

$$
(A \mid \mathbf{0})=\left(\begin{array}{ccc|c}
-2 & -2 & -2 & 0 \\
-2 & -2 & -2 & 0 \\
2 & -2 & -2 & 0
\end{array}\right)
$$

Apply row operations:

$$
\left.\left.\begin{array}{rl}
\left(\begin{array}{ccc|c}
-2 & -2 & -2 & 0 \\
-2 & -2 & -2 & 0 \\
2 & -2 & -2 & 0
\end{array}\right) & \longrightarrow\left(\begin{array}{ccc|c}
-2 & -2 & -2 & 0 \\
0 & 0 & 0 & 0 \\
0 & -4 & -4 & 0
\end{array}\right) \quad\left(R_{2} \longmapsto R_{2}-R_{1}\right) \text { and }\left(R_{3} \longmapsto R_{3}+R_{1}\right) \\
\left(\begin{array}{ccc|c}
-2 & -2 & -2 & 0 \\
0 & 0 & 0 & 0 \\
0 & -4 & -4 & 0
\end{array}\right) & \longrightarrow\left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right) \quad\left(R_{1} \longmapsto-\frac{1}{2} \cdot R_{1}\right) \text { and }\left(R_{3} \longmapsto-\frac{1}{4} \cdot R_{3}\right) \\
\left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right) & \longrightarrow\left(\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
\left(\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) & \longrightarrow\left(R_{2} \longleftrightarrow R_{3}\right) \\
1 & 0 \\
0 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 0
\end{array} 0 \right\rvert\, 0\right) \quad\left(R_{1} \longmapsto R_{1}-R_{2}\right) \quad .
$$

Rewrite as a system of equations and solve:

$$
\begin{aligned}
a & =0 \\
b+c & =0 \quad \Longrightarrow b=-c
\end{aligned}
$$

Write down the solution:

$$
\mathbf{u}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
0 \\
-c \\
c
\end{array}\right)=c\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)
$$

Any non-zero choice of c will give us an eigenvector, there is no need to cancel fractions so let $c=1$ to get:

$$
\mathbf{u}_{3}=\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)
$$

The general solution is given by:

$$
\begin{aligned}
\mathbf{x}(t) & =c_{1} \mathbf{u}_{1} e^{r_{1} t}+c_{2} \mathbf{u}_{\mathbf{2}} e^{r_{2} t}+c_{3} \mathbf{u}_{\mathbf{3}} e^{r_{3} t} \\
& =c_{1}\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right) e^{t}+c_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) e^{-t}+c_{3}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) e^{3 t}
\end{aligned}
$$

This can also be rewritten as:

$$
\mathbf{x}(t)=\left(\begin{array}{ccc}
-e^{t} & e^{-t} & 0 \tag{13}\\
-e^{t} & e^{-t} & -e^{3 t} \\
e^{t} & 0 & e^{3 t}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

We can now use the initial condition

$$
\mathbf{x}(0)=\left(\begin{array}{c}
-2 \\
-3 \\
2
\end{array}\right)
$$

to solve for c_{1}, c_{2}, c_{3}. Substituting $t=0$ into (13) we get the matrix equation:

$$
\mathbf{x}(0)=\left(\begin{array}{ccc}
-e^{0} & e^{0} & 0 \\
-e^{0} & e^{0} & -e^{0} \\
e^{0} & 0 & e^{0}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

Since $\mathbf{x}(0)=\left(\begin{array}{c}-2 \\ -3 \\ 2\end{array}\right)$ this simplifies to:

$$
\left(\begin{array}{c}
-2 \\
-3 \\
2
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 1 & -1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

Solving by row reduction:

Set up an augmented matrix and reduce:

$$
\begin{aligned}
\left(\begin{array}{ccc|c}
-1 & 1 & 0 & -2 \\
-1 & 1 & -1 & -3 \\
1 & 0 & 1 & 2
\end{array}\right) & \longrightarrow\left(\begin{array}{ccc|c}
-1 & 1 & 0 & -2 \\
0 & 0 & -1 & -1 \\
0 & 1 & 1 & 0
\end{array}\right) \quad\left(R_{2} \longmapsto R_{2}-R_{1}\right) \text { and }\left(R_{3} \longmapsto R_{3}+R_{1}\right) \\
\left(\begin{array}{ccc|c}
-1 & 1 & 0 & -2 \\
0 & 0 & -1 & -1 \\
0 & 1 & 1 & 0
\end{array}\right) & \longrightarrow\left(\begin{array}{ccc|c}
1 & -1 & 0 & 2 \\
0 & 1 & 1 & 0 \\
0 & 0 & -1 & -1
\end{array}\right) \quad\left(R_{2} \longleftrightarrow R_{3}\right) \text { and }\left(R_{1} \longmapsto-1 \cdot R_{1}\right) \\
\left(\begin{array}{ccc|c}
1 & -1 & 0 & 2 \\
0 & 1 & 1 & 0 \\
0 & 0 & -1 & -1
\end{array}\right) & \longrightarrow\left(\begin{array}{ccc|c}
1 & 0 & 1 & 2 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \quad\left(R_{1} \longmapsto R_{1}+R_{2}\right) \text { and }\left(R_{3} \longmapsto-1 \cdot R_{3}\right) \\
\left(\begin{array}{lll|l}
1 & 0 & 1 & 2 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) & \longrightarrow\left(\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right) \quad\left(R_{1} \longmapsto R_{1}-R_{3}\right) \text { and }\left(R_{2} \longmapsto R_{2}-R_{3}\right)
\end{aligned}
$$

Now we can just read off the solution from the last column:

$$
\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
$$

So the solution to (12) is:

$$
\begin{aligned}
\mathbf{x}(t) & =c_{1}\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right) e^{t}+c_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) e^{-t}+c_{3}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) e^{3 t} \\
& =\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right) e^{t}-\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) e^{-t}+\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) e^{3 t} \\
& =\left(\begin{array}{c}
-e^{t}-e^{-t} \\
-e^{t}-e^{-t}-e^{3 t} \\
e^{t}+e^{3 t}
\end{array}\right)
\end{aligned}
$$

