2nd Order Constant Coefficient Differential Equations (Non-Homogeneous Case)

Method of Undetermined Coefficients

The first method we learnt to tackle non-homogeneous constant coefficient differential equations is called the method of undetermined coefficients. This is a fancy name for what amounts to trial and error used to determine the particular solution y_{p}.

Consider the following differential equation:

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=f(t) \tag{1}
\end{equation*}
$$

The function $f(t)$ determines a guess for what the particular solution looks like (with some unknown coefficients). By substituting the guess into (1) we can solve for the coefficients and determine the $y_{p}(t)$ exactly.

It is important to note that this method only works for specific functions $f(t)$ that are made up of polynomials, exponentials and sinusoids (sines and cosines). For ease of notation let $P_{m}(t)$ and $Q_{n}(t)$ be polynomials of degree m and n respectively.

Case 1: $f(t)=P_{m}(t) e^{\lambda t}$
Use the form:

$$
\begin{equation*}
y_{p}(t)=t^{s}\left(A_{m} t^{m}+A_{m-1} t^{m-1}+\cdots+A_{0}\right) e^{\lambda t} \tag{2}
\end{equation*}
$$

Where

$$
s= \begin{cases}0 & \text { if } \lambda \text { is not a root of the auxiliary equation } \\ 1 & \text { if } \lambda \text { is a root (not repeated) of the auxiliary equation } \\ 2 & \text { if } \lambda \text { is a repeated root of the auxiliary equation }\end{cases}
$$

Case 2: $f(t)=P_{m}(t) e^{\alpha t} \cos (\beta t)+Q_{n}(t) e^{\alpha t} \sin (\beta t)$
Use the form:

$$
\begin{align*}
& y_{p}(t)=t^{s}\left(A_{k} t^{k}+A_{k-1} t^{k-1}+\cdots+A_{0}\right) e^{\alpha t} \cos (\beta t) \\
& \quad+t^{s}\left(B_{k} t^{k}+B_{k-1} t^{k-1}+\cdots+B_{0}\right) e^{\alpha t} \sin (\beta t) \tag{3}
\end{align*}
$$

Where k is the maximum of m and n (the degrees of the polynomials $P_{m}(t)$ and $Q_{n}(t)$ respectively) and

$$
s= \begin{cases}0 & \text { if } \alpha+i \beta \text { is not a root of the auxiliary equation } \\ 1 & \text { if } \alpha+i \beta \text { is a root of the auxiliary equation }\end{cases}
$$

Note: It is impossible for $\alpha+i \beta$ to be a repeated root (since $\alpha-i \beta$ is always the other root) so there is no option for $s=2$.

Note: If you have a function $f(t)$ such as $\tan (t), \ln (2 t), 1 / t$ etc, that is not given by any of the above you need to use variation of parameters instead to solve your problem.

Particular Solution General Form (Distinct Roots):

Differential Equation	Aux. roots	$y_{p}(t)$
$y^{\prime \prime}-3 y^{\prime}+2 y=4 t^{2}-2$	1,2	$A t^{2}+B t+C$
$y^{\prime \prime}-3 y^{\prime}+2 y=\sin (t)$	1,2	$A \cos (t)+B \sin (t)$
$y^{\prime \prime}-3 y^{\prime}+2 y=\sin (2 t)$	1,2	$A \cos (2 t)+B \sin (2 t)$
$y^{\prime \prime}-3 y^{\prime}+2 y=12 e^{3 t}$	1,2	$A e^{3 t}$
$y^{\prime \prime}-3 y^{\prime}+2 y=2 e^{t}$	1,2	$A t e^{t}$
$y^{\prime \prime}-3 y^{\prime}+2 y=4 t^{2} e^{t}$	1,2	$\left(A t^{2}+B t+C\right) t e^{t}$
$y^{\prime \prime}-3 y^{\prime}+2 y=\frac{3}{4} t e^{3 t}$	1,2	$(A t+B) e^{3 t}$
$y^{\prime \prime}-3 y^{\prime}+2 y=t^{3}-\cos (3 t)$	1,2	$\left(A t^{3}+B t^{2}+C t+D\right)+$ $E \cos (3 t)+F \sin (3 t)$
$y^{\prime \prime}-3 y^{\prime}+2 y=t^{2} \cos (2 t)+t^{3} \sin (2 t)$	1,2	$\left(A t^{3}+B t^{2}+C t+D\right) \cos (2 t)+$ $\left(E t^{3}+F t^{2}+G t+H\right) \sin (2 t)$
$y^{\prime \prime}-3 y^{\prime}+2 y=e^{3 t} \sin (t)$	1,2	$A e^{3 t} \cos (t)+B e^{3 t} \sin (t)$
$y^{\prime \prime}-3 y^{\prime}+2 y=e^{3 t}+\sin (t)$	1,2	$A e^{3 t}+B \cos (t)+C \sin (t)$
$y^{\prime \prime}-3 y^{\prime}+2 y=e^{t} \sin (t)$	1,2	$A e^{t} \cos (t)+B e^{t} \sin (t)$
$y^{\prime \prime}-3 y^{\prime}+2 y=e^{t}+\sin (t)$	1,2	$A t e^{t}+B \cos (t)+C \sin (t)$

Particular Solution General Form (Repeated Root):

Differential Equation	Aux. roots	$y_{p}(t)$
$y^{\prime \prime}+2 y^{\prime}+y=3 t^{2}+t$	$-1,-1$	$A t^{2}+B t+C$
$y^{\prime \prime}+2 y^{\prime}+y=\sin (t)$	$-1,-1$	$A \cos (t)+B \sin (t)$
$y^{\prime \prime}+2 y^{\prime}+y=\sin (2 t)$	$-1,-1$	$A \cos (2 t)+B \sin (2 t)$
$y^{\prime \prime}+2 y^{\prime}+y=\pi^{2} e^{3 t}$	$-1,-1$	$A e^{3 t}$
$y^{\prime \prime}+2 y^{\prime}+y=5 e^{-t}$	$-1,-1$	$A t^{2} e^{-t}$
$y^{\prime \prime}+2 y^{\prime}+y=7 t e^{-t}$	$-1,-1$	$(A t+B) t^{2} e^{-t}$
$y^{\prime \prime}+2 y^{\prime}+y=\ln (9) t e^{2 t}$	$-1,-1$	$(A t+B) e^{2 t}$
$y^{\prime \prime}+2 y^{\prime}+y=e^{3 t} \sin (t)$	$-1,-1$	$A e^{3 t} \cos (t)+B e^{3 t} \sin (t)$
$y^{\prime \prime}+2 y^{\prime}+y=e^{3 t}+\sin (t)$	$-1,-1$	$A e^{3 t}+B \cos (t)+C \sin (t)$
$y^{\prime \prime}+2 y^{\prime}+y=e^{-t} \sin (t)$	$-1,-1$	$A e^{-t} \cos (t)+B e^{-t} \sin (t)$
$y^{\prime \prime}+2 y^{\prime}+y=e^{-t}+\sin (t)$	$-1,-1$	$A t^{2} e^{-t}+B \cos (t)+C \sin (t)$

Particular Solution General Form (Complex Roots):

Differential Equation	Aux. roots	$y_{p}(t)$
$y^{\prime \prime}-2 y^{\prime}+2 y=4 t^{2}-2$	$1+i, 1-i$	$A t^{2}+B t+C$
$y^{\prime \prime}-2 y^{\prime}+2 y=\sin (t)$	$1+i, 1-i$	$A \cos (t)+B \sin (t)$
$y^{\prime \prime}-2 y^{\prime}+2 y=\sin (2 t)$	$1+i, 1-i$	$A \cos (2 t)+B \sin (2 t)$
$y^{\prime \prime}-2 y^{\prime}+2 y=\pi^{2} e^{3 t}$	$1+i, 1-i$	$A e^{3 t}$
$y^{\prime \prime}-2 y^{\prime}+2 y=7 t e^{-t}$	$1+i, 1-i$	$(A t+B) e^{-t}$
$y^{\prime \prime}-2 y^{\prime}+2 y=e^{3 t} \sin (t)$	$1+i, 1-i$	$A e^{3 t} \cos (t)+B e^{3 t} \sin (t)$
$y^{\prime \prime}-2 y^{\prime}+2 y=e^{3 t}+\cos (t)$	$1+i, 1-i$	$A e^{3 t}+B \cos (t)+C \sin (t)$
$y^{\prime \prime}-2 y^{\prime}+2 y=e^{t} \sin (t)$	$1+i, 1-i$	$A t e^{t} \cos (t)+B t e^{t} \sin (t)$
$y^{\prime \prime}-2 y^{\prime}+2 y=e^{t} \sin (2 t)$	$1+i, 1-i$	$A e^{t} \cos (2 t)+B e^{t} \sin (2 t)$
$y^{\prime \prime}-2 y^{\prime}+2 y=e^{2 t} \sin (t)$	$1+i, 1-i$	$A e^{2 t} \cos (t)+B e^{2 t} \sin (t)$
$y^{\prime \prime}-2 y^{\prime}+2 y=e^{t}+\sin (t)$	$1+i, 1-i$	$A e^{t}+B \cos (t)+C \sin (t)$
$y^{\prime \prime}-2 y^{\prime}+2 y=t e^{3 t} \cos (t)$	$1+i, 1-i$	$(A t+B) e^{3 t} \cos (t)+(C t+$ $D) e^{3 t} \sin (t)$
$y^{\prime \prime}-2 y^{\prime}+2 y=t e^{t} \sin (t)$	$1+i, 1-i$	$(A t+B) t e^{t} \cos (t)+(C t+$ $D) t e^{t} \sin (t)$

Solution algorithm:

1. Decide the correct general form for a particular solution $y_{p}(t)$ (with unknown coefficients) based on $f(t)$ in (1).
2. Differentiate $y_{p}(t)$ to get $y_{p}^{\prime}(t)$ and $y_{p}^{\prime \prime}(t)$
3. Substitute $y_{p}(t), y_{p}^{\prime}(t), y_{p}^{\prime \prime}(t)$ into (1).
4. By separating the equation into various components, calculate the unknown coefficients of $y_{p}(t)$.
Example (4.5.19). Find a general solution to the differential equation

$$
\begin{equation*}
y^{\prime \prime}(x)-3 y^{\prime}(x)+2 y(x)=e^{x} \sin (x) \tag{4}
\end{equation*}
$$

Solution: The hardest part is always deciding on the correct guess for the particular solution. Carefully matching each situation with cases 1 and 2 will take some of the guesswork out of the problems.

In this case the right hand side of (4) matches case 2 with:

$$
\begin{aligned}
P_{m}(x) & \equiv 0 \\
Q_{n}(x) & \equiv 1(\Longrightarrow n=0) \\
\alpha & =1 \\
\beta & =1
\end{aligned}
$$

There are only two unknown constants (s and k) that we need to work out before we can directly apply the formula:

$$
\begin{align*}
y_{p}(x)=x^{s}\left(A_{k} x^{k}+\right. & \left.A_{k-1} x^{k-1}+\cdots+A_{0}\right) e^{\alpha x} \cos (\beta x) \\
& +x^{s}\left(B_{k} x^{k}+B_{k-1} x^{k-1}+\cdots+B_{0}\right) e^{\alpha x} \cos (\beta x) \tag{5}
\end{align*}
$$

To decide whether $s=0$ or $s=1$ we solve the auxiliary equation $r^{2}-3 r+2=$ 0 . This has distinct roots $r=1, r=2$ and since $1+i$ is not a root we have $s=0$ in (5).

The constant k is the maximum of the degrees of polynomials P_{0} and Q_{0}. Since these are both constant polynomials (i.e. they both have degree 0) $k=0$.

Combining all of this we determine the correct trial function as given by:

$$
\begin{equation*}
y_{p}(x)=A_{0} e^{x} \cos (x)+B_{0} e^{x} \sin (x) \tag{6}
\end{equation*}
$$

To determine A_{0} and B_{0} we need to substitute (6) into the differential equation (4), before we can do this we need to know $y_{p}^{\prime}(x)$ and $y_{p}^{\prime \prime}(x)$.

Differentiating:

$$
\begin{aligned}
y_{p}^{\prime}(x) & =A_{0}\left(e^{x} \cos (x)-e^{x} \sin (x)\right)+B_{0}\left(e^{x} \sin (x)+e^{x} \cos (x)\right) \\
& =\left(A_{0}+B_{0}\right) e^{x} \cos (x)+\left(-A_{0}+B_{0}\right) e^{x} \sin (x)
\end{aligned}
$$

Twice:

$$
\begin{aligned}
y_{p}^{\prime \prime}(x) & =\left(A_{0}+B_{0}\right)\left(e^{x} \cos (x)-e^{x} \sin (x)\right)+\left(-A_{0}+B_{0}\right)\left(e^{x} \sin (x)+e^{x} \cos (x)\right) \\
& =\left(2 B_{0}\right) e^{x} \cos (x)+\left(-2 A_{0}\right) e^{x} \sin (x)
\end{aligned}
$$

Substituting into (4) we get:

$$
\begin{aligned}
\text { LHS }= & y^{\prime \prime}(x)-3 y^{\prime}(x)+2 y(x) \\
= & {\left[\left(2 B_{0}\right) e^{x} \cos (x)+\left(-2 A_{0}\right) e^{x} \sin (x)\right] } \\
& -3\left[\left(A_{0}+B_{0}\right) e^{x} \cos (x)+\left(-A_{0}+B_{0}\right) e^{x} \sin (x)\right] \\
& +2\left[A_{0} e^{x} \cos (x)+B_{0} e^{x} \sin (x)\right] \\
= & {\left[-B_{0}-A_{0}\right] e^{x} \cos (x)+\left[A_{0}-B_{0}\right] e^{x} \sin (x) } \\
\text { RHS }= & e^{x} \sin (x)
\end{aligned}
$$

Comparing we get:

$$
\begin{array}{r}
-B_{0}-A_{0}=0 \\
A_{0}-B_{0}=1
\end{array}
$$

Solving for A_{0} and B_{0}

$$
\begin{aligned}
A_{0} & =\frac{1}{2} \\
B_{0} & =-\frac{1}{2}
\end{aligned}
$$

So a particular solution to (4) is given by

$$
\begin{equation*}
y_{p}(x)=\frac{1}{2} e^{x} \cos (x)-\frac{1}{2} e^{x} \sin (x) \tag{7}
\end{equation*}
$$

The general solution to (4) is a sum of the general homogeneous solution $y_{h}(x)$ (determined by the auxiliary equation, method outlined here) and the particular solution $y_{p}(x)$ given by (7):

$$
y(x)=C_{1} e^{x}+C_{2} e^{2 x}+\frac{1}{2} e^{x} \cos (x)-\frac{1}{2} e^{x} \sin (x)
$$

Example (4.5.24). Find the solution to the initial value problem

$$
\begin{equation*}
y^{\prime \prime}=6 t ; \quad y(0)=3, \quad y^{\prime}(0)=-1 \tag{8}
\end{equation*}
$$

Solution: First we find the (general) homogeneous solution.

The auxiliary equation is $r^{2}=0$ and so has the (repeated) root $r=0$. This means the general homogeneous solution to (8) is given by

$$
\begin{aligned}
y_{h}(t) & =C_{1} e^{0 t}+C_{2} t e^{0 t} \\
& =C_{1}+C_{2} t
\end{aligned}
$$

In this case the right hand side of (8) matches case 1 with:

$$
\begin{aligned}
P_{m}(t) & =6 t(\Longrightarrow m=1) \\
\lambda & =0
\end{aligned}
$$

Since $\lambda=0$ is a repeated root of the auxiliary equation we have $s=2$ in the formula for the particular solution to (8):

$$
y_{p}(t)=t^{2}\left(A_{1} t^{1}+A_{0}\right)=A_{1} t^{3}+A_{0} t^{2}
$$

Differentiating twice:

$$
\begin{aligned}
y_{p}^{\prime}(t) & =3 A_{1} t^{2}+2 A_{0} t \\
y_{p}^{\prime \prime}(t) & =6 A_{1} t+2 A_{0}
\end{aligned}
$$

Substituting into (8) we get:

$$
\begin{aligned}
\mathrm{LHS} & =y^{\prime \prime} \\
& =6 A_{1} t+2 A_{0} \\
\mathrm{RHS} & =6 t
\end{aligned}
$$

Comparing we get:

$$
\begin{aligned}
& 6 A_{1}=6 \\
& 2 A_{0}=0
\end{aligned}
$$

Solving for A_{0} and A_{1} :

$$
\begin{aligned}
& A_{1}=1 \\
& A_{0}=0
\end{aligned}
$$

So a particular solution to (8) is given by

$$
\begin{equation*}
y_{p}(t)=t^{3} \tag{9}
\end{equation*}
$$

The general solution to (8) is

$$
y(t)=C_{1}+C_{2} t+t^{3}
$$

where we can solve for C_{1} and C_{2} by applying the initial conditions:

$$
\begin{array}{r}
y(0)=3 \Longrightarrow C_{1}=3 \\
y^{\prime}(0)=-1 \Longrightarrow C_{2}=-1
\end{array}
$$

Finally, this means that the solution to the IVP (8) is

$$
y(t)=3-t+t^{3}
$$

