
1. Let \(\phi \) be a function such that \(\frac{\partial \phi}{\partial x}(0, 0, 0) = 2, \frac{\partial \phi}{\partial y}(0, 0, 0) = 3 \) and \(\frac{\partial \phi}{\partial z}(0, 0, 0) = 4 \).
 (a) Let \(w(t) = \phi(c(t)) \), where \(c(t) = t \, i + t^2 \, j + 3t \, k \) is a curve. Find \(\frac{dw}{dt}(0) \)!
 (b) In which direction is the rate of increase of \(\phi \) largest at the point \((0, 0, 0) \)?
 (c) Let \(\mathbf{F} = \text{grad} \, \phi \). Find \(\text{curl} \, \mathbf{F} \).

2. Let \(f(x, y) = x \cos(x + y) \)
 (a) Calculate the second order Taylor polynomial of \(f \) about the point \((1, -1) \).
 (b) Use your answer to (a) to write down an estimate for \(f(1.1, -0.8) \).
 (c) Use the linear approximation to find an estimate for \(f(1.1, -0.8) \).

3. Let \(\mathbf{G} = -yi + xj \) be a vector field.
 (a) Show that the curves \(c(t) = r \cos t \, i + r \sin t \, j \), where \(r \) is a constant, are flow lines for \(\mathbf{G} \).
 (b) Sketch the vector field \(\mathbf{G} \) at the points \((1,0), (0,1), (-1,0) \) and \((0,-1) \) and sketch the flow line passing through \((1,0) \).

4. Let \(\mathbf{F}(x, y, z) = (y^2 + x) \, i - (x^2 - y) \, j + z \, k \).
 (a) Find \(\text{curl} \, \mathbf{F} \).
 (b) Find \(\text{div} \, \mathbf{F} \).
 (c) Find the derivative matrix \(\mathbf{D} \mathbf{F} \) (i.e. the matrix of partial derivatives).