1. (8 points) (a) (4 points) Find the equation for the plane containing the lines $r_1(t) = (1, 2 + t, -1 - 2t)$ and $r_2(t) = (1 - t, 2, -1 + t)$

(b) (2 points) Calculate the area of the parallelogram determined by the two vectors $\mathbf{j} - 2\mathbf{k}$ and $-\mathbf{i} + \mathbf{k}$
(c) (2 points) Find the line of intersection between the planes $y - 2z = 0$
and $-x + z = 0$
2. (10 points) Evaluate the following integrals

(a) (4 points)
\[
\int \int_{R} e^{2x-3y} \, dA \quad \text{where} \ R = [0, 1] \times [1, 2]
\]

(b) (6 points)
\[
\int_{0}^{4} \int_{\sqrt{x}}^{2} \sin(y^3) \, dy \, dx
\]
3. (8 points) Let \(f(x, y, z) = x^2 + 2y^2 - z \)

(a) (3 points) In which direction from the point \((1,1,0)\) does \(f \) increase the fastest?

(b) (3 points) What is the rate of change of \(f \) in the direction of the vector \(\mathbf{i} - \mathbf{k} \) at the point \((1,1,0)\)
(c) (2 points) Find the equation of the tangent plane to the surface
\[z = x^2 + 2y^2 - 3 \] at (1,1,0)
4. (6 points) Let $f(u, v) = (v^2, u^2 - v)$ and $g(x, y, z) = (xz, y^2 z)$.

Calculate

$$\mathbf{D}(f \circ g)(-1, 1, -1)$$
5. (10 points) A particle in space follows a helix-shaped path given by

\[\mathbf{c}(t) = (\cos(t), \sin(t), t) \]

(a) (3 points) Calculate the velocity vector function \(\mathbf{c}'(t) \)

(b) (2 points) Show that the speed of the particle is constant
(c) (3 points) Find the equation of the tangent line to the path at $t = \pi$

(d) (2 points) If the particle follows the path $\mathbf{c}(t)$ until it flies off on a tangent at $t = \pi$, where is the particle at $t = 2\pi$?
6. (10 points) Let W be the region inside the sphere $x^2 + y^2 + z^2 = 4$ and above the plane $z = 0$.

(a) (5 points) Describe W as an elementary region of the form:

\[
 a \leq x \leq b, \quad \phi_1(x) \leq y \leq \phi_2(x), \quad \gamma_1(x, y) \leq z \leq \gamma_2(x, y)
\]

(You need to determine $a, b, \phi_1(x), \phi_2(x), \gamma_1(x, y), \gamma_2(x, y)$)
(b) (3 points) Rewrite the triple integral

\[\iiint_W 1 \, dV \]

as an iterated integral (you do not have to evaluate it).

(c) (2 points) What does the triple integral in part (b) calculate?