There are 6 pages and 3 questions, for a total of 100 points.

No calculators, no electronic devices, no books, no notes, except for the one 8.5in×11in sheet of notes. No other assistance is permitted during this exam.

Please turn off and put away your cellphone and all other electronic devices.

Answer the questions in the spaces provided on the question sheets.
Read each question carefully, and answer each question completely.
Answer the questions in the spaces provided on the question sheets.
Show all of your work; no credit will be given for unsupported answers.
Write your solutions clearly and legibly; no credit will be given for illegible solutions.
To maximize credit, cross out incorrect work.
If any question is not clear, ask for clarification.

Good luck! ☺

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points:</td>
<td>40</td>
<td>15</td>
<td>45</td>
<td>100</td>
</tr>
</tbody>
</table>

Score:
1. (a) (15 points) Find the general solution to the second order homogeneous equation

\[y'' + 4y' + 4y = 0. \]

\[r^2 + 4r + 4 = 0 \]
\[= (r + 2)^2 \]

\[r = -2 \quad \text{so} \quad y = e^{-2t} \quad \text{is a solution} \]

repeated root so \[y = te^{-2t} \] is another solution

\[y = C_1 e^{-2t} + C_2 te^{-2t} \] is the general solution
(b) (25 points) Use the method of undetermined coefficients to find the general solution of the second order nonhomogeneous differential equation

$$y'' + 4y' + 4y = t + e^{3t}.$$

Try particular solution of form:

$$y_1(t) = A t + B$$

$$y_1'(t) = A$$

$$y_1''(t) = 0$$

Plug in:

$$y_1'' + 4y_1' + 4y_1 = t$$

$$0 + 4A + 4(A t + B) = t$$

$$4A t + 4A + 4B = t$$

$$4A = 1 \Rightarrow A = \frac{1}{4}$$

$$4A + 4B = 0 \Rightarrow B = -\frac{1}{4}$$

So particular sol'n is

$$y_p(t) = y_1(t) + y_2(t)$$

$$y_p(t) = -\frac{1}{4} + \frac{1}{4} t + \frac{1}{25} e^{3t}$$

Plug in:

$$y_2''(t) + 4y_2'(t) + 4y_2 = e^{3t}$$

$$(9c + 12c + 4c)e^{3t} = e^{3t}$$

$$25c = 1$$

$$c = \frac{1}{25}$$

General sol'n:

$$y(t) = C_1 e^{-2t} + C_2 te^{-2t} + \frac{-1}{4}$$

$$\quad + \frac{1}{4} t + \frac{1}{25} e^{3t}$$
2. (15 points) Determine whether the following vectors are linearly independent or not.

\[\begin{pmatrix} 2 \\ -1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 \\ -2 \end{pmatrix} \]

\[\mathbf{v} \quad \mathbf{w} \]

\[\begin{array}{c}
\text{Sol I} \\
\mathbf{v} \\
\mathbf{w} \\
\text{c}_1 \begin{pmatrix} 2 \\ -1 \end{pmatrix} + c_2 \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\
2c_1 + c_2 = 0 \\
-c_1 - 2c_2 = 0 \\
\Rightarrow c_2 = -2c_1 \\
3c_1 = 0 \\
C_2 = -2C_1 = -2 \cdot 0 = 0 \\
\text{Since } C_1 = 0, C_2 = 0 \text{ is the only solution, the vectors are linearly independent.}
\end{array} \]

\[\text{Sol II} \\
\det \begin{pmatrix} 2 & 1 \\ -1 & -2 \end{pmatrix} = 2(-2) - 1(-1) = -3 \neq 0 \\
\text{Since } \det (\mathbf{v}, \mathbf{w}) \neq 0 \Rightarrow \text{the vectors are linearly independent.} \]
3. Consider the system of differential equations

\[
\begin{align*}
 x' &= x - y \\
 y' &= 2x + 4y.
\end{align*}
\]

(a) (20 points) Find the general solution.

\[
A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}
\]

\[
\det(A - 2I) = 0 \iff (1-2)(4-2) + 2 = 0 \iff 2^2 - 5x + 6 = 0 \implies x = 2, 3
\]

\[
2 = 2: \begin{pmatrix} -1 & -1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = 0 \implies -a + b = 0 \implies b = -a
\]

\[
\implies \begin{pmatrix} a \\ b \end{pmatrix} = a \begin{pmatrix} 1 \\ -1 \end{pmatrix}
\]

\[
2 = 3: \begin{pmatrix} -2 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = 0 \implies 2a + b = 0 \implies b = -2a
\]

\[
\implies \begin{pmatrix} a \\ b \end{pmatrix} = a \begin{pmatrix} 1 \\ -2 \end{pmatrix}
\]

\[
\implies \begin{pmatrix} x \\ y \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{3t}
\]
(b) (15 points) Sketch the phase portrait. Summarize the main features and explain why it looks that way. Specify what kind of point the origin is (e.g. spiral sink, nodal source, etc.)

\[0 < \lambda_1 < \lambda_2\]

(c) (10 points) Find the solution with initial condition \(x(0) = 3, y(0) = -4\).

\[
\begin{pmatrix}
3 \\
-4
\end{pmatrix}
= \begin{pmatrix}
x(0) \\
y(0)
\end{pmatrix}
= \begin{pmatrix}
c_1 \\
c_2
\end{pmatrix}
= \begin{pmatrix}
1 \\
-2
\end{pmatrix}
\]

Thus,
\[
\begin{pmatrix}
x(t) \\
y(t)
\end{pmatrix}
= \begin{pmatrix}
-x(t) e^{2t} \\
-2x(t) e^{3t}
\end{pmatrix}
\]