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RAMSEY THEORY AND PAUL ERDOs
(RECENT RESULTS FROM A HISTORICAL PERSPECTIVE)

R. L. GRAHAM and J. NESETRIL*

Ramsey’s theorem was not discovered by Paul Erdés. But perhaps one could
say that Ramsey Theory was created largely by him. This paper will attempt
to justify this claim.

1. INTRODUCTION

Ramsey’s theorem was not discovered by Paul Erdés. This was barely tech-
nically possible: Ramsey proved his theorem in 1928 (or 1930, depending
on the quoted source) and this is prior to the earliest Erdés publication in
1932. He was then 19, and at such an early age four years makes a big
difference. Also at this time Erdés was not predominantly active in combi-
natorics. The majority of the earliest publications of Erdés are focussed on
number theory, as can be seen from the following table:

1932 | 1933 | 1934 | 1935 | 1936 | 1937 | 1938 | 1939
all papers 2 0 5 10 11 10 13 13
number

2 0 5 9 9 8 7 10

theory
combinatorics 0 0 0 1 1 0 1 0
other 0 0 0 1 2 3

* Partially supported by the Project LNOOA056 of the Czech Ministry of Education
and by GAUK 158 grant.
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The three combinatorial exceptions among his first 82 papers published
in 8 years are two papers on infinite Eulerian graphs and the paper [45] by
Erdés and G. Szekeres. Thus, the very young P. Erdés was not a driving
force in the development of Ramsey theory or Ramsey-type theorems in
the thirties. That position should be reserved for Issac Schur who not
only proved his sum theorem [112] in 1916 but, as it appears now [113],
also conjectured van der Waerden’s theorem [124], proved an important
extension to it, and thereby put it into a context which inspired his student
R. Rado to completely settle (in 1933) the question of monochromatic
solutions of linear equations [103]. This result stands apart even after 60
years.

Yet, in retrospect, it is fair to say that Paul Erd4s was responsible for the
continuously growing popularity of the field. Ever since his pioneering work
in the thirties he proved, conjectured and asked seminal questions which
together, some 40 to 50 years later, formed the core of Ramsey theory.
And for Erdés, Ramsey theory was a constant source of problems which
motivated some of the key pieces of his combinatorial research.

It is the purpose of this note to partially justify these claims, using a
few examples of Erdds’ activity in Ramsey theory which we will discuss from
a contemporary point of view.

In the first section we cover paper [45] and subsequent developments in
some detail. In Section 2, we consider developments based on Erdés’ work
related to bounds on various Ramsey functions. Finally, in Section 3 we
consider his work related to structural extensions of Ramsey’s theorem.

No mention will be made of his work on infinite extensions of Ramsey’s
theorem (see [66] for a survey). This paper is an extension and update of
the authors’ article {64].

2. THE ERDOS—SZEKERES THEOREM

F. P. Ramsey discovered his celebrated theorem [105] in a sound mathe-
matical context (dealing with the decision problem for a class of first-order
formulas). But since the time of Dirichlet, the “Schubfach principle” and its
extensions and variations have played a distinguished role in mathematics.
The same holds for the other early contributions of Hilbert [70], Schur {112]
and van der Waerden [124].
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Perhaps because of this context Ramsey’s theorem was never regarded
as a puzzle and/or just a combinatorial curiosity. Thanks to Erdds and
Szekeres [45], this theorem found an early application in a quite different
context, namely, plane geometry:

Theorem 2.1 ([45]). Let n be a positive integer. Then there exists a least
integer N(n) with the following property: If X is a set of N(n) points in
the plane in general position (i.e., no three of which are collinear) then X
contains an n-tuple which forms the vertices of a convex n-gon.

One should note that (like Ramsey’s original application in logic) this
statement does not involve any coloring (or partition) and thus, by itself,
fails to be of “Ramsey type”. Rather it fits to a more philosophical descrip-
tion of Ramsey type statements as formulated by Mirsky:

“There are numerous theorems in mathematics which assert,
crudely speaking, that every system of a certain class possesses
a large subsystem with a higher degree of organization than the
original system.”

It is perhaps noteworthy to list the main features of the paper. What
a wealth of ideas it contains!

I. It is proved that N(4) = 5 and this is attributed to Mrs. E. Klein. This is
tied to the social and intellectual climate in Budapest in the thirties which
has been described both by Paul Erdds and Szekeres on several occasions
(see e.g. [28]), and with names like the Happy End Theorem.

II. The following two questions related to statement of Theorem 2.1 are
explicitly formulated:

(a) Does the number N(n) exist for every n?
(b) If so, estimate the value of N(n).

It is clear that the estimates were considered by Erdés from the very
beginning. This is evident at several places in the article.

III. The first proof proves the existence of N(n) by applying Ramsey’s the-
orem for partitions of quadruples. It is proved that N(n) < r(2,4,{5,n}).
This is still a textbook argument. Another proof based on Ramsey’s theo-
rem for partitions of triples was found more recently by A. Tarsi (see [65]).
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So far no proof has emerged which is based on the graph Ramsey theorem
only.

IV. The authors give “a new proof of Ramsey’s theorem which differs
entirely from the previous ones and gives for m;(k, £) slightly smaller limits”.
Here m;(k,£) denotes the minimum value of |X| such that every partition
of the i-element subsets of X into two classes, say a and (3, each k-element
subset contains an i-element subset of class a or each f-element subset
contains an i-element subset of class 3.

Thus, m;(k, £) is the Ramsey number for 2-partitions of i-element sub-
sets. These numbers are denoted today by (2,4, {k,£}) or ri(k,£). The
proof is close to the standard textbook proofs of Ramsey’s theorem. Several
times Erdds attributed it to G. Szekeres.

Erdés and Szekeres explicitly state that (ro(k+1,£+1) =)me(k+1,£+
1) < (k;e) and this value remained for 50 years essentially the best available
upper bound for graph Ramsey numbers until the recent (independent)
improvements by Rodl and Thomason. The current best upper bound (for

k = ¢) is essentially [122]
2k
(%) /%

V. It is not as well known that [45] contains yet another proof of the graph-
theoretic formulation of Ramsey’s theorem (in the above notation, i = 2)
which is stated for its particular simplicity. We reproduce its formulation
here.

Theorem. In an arbitrary graph let the maximum number of independent
points be k; if the number of points is N > m(k, ) then there exists in our
graph a complete graph of order £.

Proof. For £ = 1, the theorem is trivial for any k, since the maximum
number of independent points is k and if the number of points is (k + 1),
there must be an edge (complete graph of order 2).

Now suppose the theorem proved for (£ — 1) with any k. Then at least

NT_'“ edges start from one of the independent points. Hence if

N -k
k

2 m(k,e - l)a
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ie.,
N2>k-m(k,l—1)+k,

then out of the endpoints of these edges we may select, by virtue of our
induction hypothesis, a complete graph whose order is (£ — 1). Since the
points of this graph are connected to the same point, they form together
with this point a complete graph of order £.

This indicates that Erdés and Szekeres were well aware of the novelty
of the approach to Ramsey’s theorem. It is our belief that this is the
formulation of Ramsey’s problem which motivated some of the key pieces of
Erdés’ research. First, an early use of the averaging argument and then the
formulation of Ramsey’s theorem in a “high off-diagonal” form: If a graph
G has a bounded clique number (for example, if it is triangle-free) then
its independence number has to be large. The study of this phenomenon
led Erdés to key papers [24], [26], [27] which will be discussed in the next
section in greater detail.

V1. The paper [45] contains a second proof of Theorem 2.1. This is a more
geometrical proof which yields a better bound

N(n) < (2”_4) +1

n-—2

and it is conjectured (based on the exact values of N(n) for n = 3,4,5) that
N(n) = 2"2 4 1. This is still an unsolved problem. The upper bound has
been improved recently by Chung and Graham [16], Kleitman and Pachter
[78] and T6th and Valtr [119]. The second proof (which 50 years later very
nicely fits to a computational geometry context) is based on yet another
Ramsey-type result.

Theorem 2.2 (ordered pigeon-hole principle). Let m, n be positive inte-
gers. Then every sequence of (m — 1)(n — 1) + 1 distinct integers contains
either a monotone increasing m-set or monotone decreasing n-set.

The authors of [45] note that the same problem was considered by
R. Rado. The stage has been set.

The ordered pigeon-hole principle has been generalized in many different
directions (see e.g., [17], [91]).

All this is contained in this truly seminal paper. Viewed from a contem-
porary perspective, the Erd6s—Szekeres paper did not solve any well-known
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problem at the time and did not contribute to Erdés’ instant mathematical
fame (as a number theorist). But the importance of the paper [45] for the
later development of combinatorial mathematics cannot be overestimated.
To illustrate this development is one of the aims of this paper.

Apart from the problem of a good estimation of the value of N there is
a peculiar structural problem related to [45]:

Call aset Y C X an n-hole in X if Y is the set of vertices of a convex
n-gon which does not contain other points of X.

Problem. Does there always exist N*(n) such that if X is any set of at
least N*(n) points in the plane in general position then X contains an n-
hole.

It is easy to prove that N*(n) exists for n < 5 (see [68] where these
numbers are determined). Horton [71] showed that N*(7) does not exist.
Thus, only the existence of N*(6) is an open problem (see [123], [95] for
recent related problems).

3. ESTIMATING RAMSEY NUMBERS

Today it seems that the first question in this area which one might be
tempted to consider is the problem of determining the actual sizes of the
sets which are guaranteed by Ramsey’s theorem (and other Ramsey-type
theorems). But one should try to resist this temptation since it is “well-
known” that Ramsey numbers (of all sorts) are difficult to determine and
even good asymptotic estimates are not easy to obtain.

It seems that these difficulties were known to both Erdds and Ramsey.
But Erdés considered them very challenging and addressed this question in
several of his key articles. In many cases his estimations obtained decades
ago are still the best available. Not only that, his innovative techniques
became standard and whole theories evolved from his seminal papers.

Here is a side comment which may partly explain this success: Erdés
was certainly one of the first number theorists who took an interest in
combinatorics in the contemporary sense (being preceded by isolated events,
for example, V. Jarnik’s work on the minimum spanning tree problem and
the Steiner problem [e.g., see [73], [69]]; incidentally, Jarnik was one of the
first coauthors of Erdés). Together with Turdn, Erdés brought to the “slums
of topology” not only his brilliance but also his expertise and “good taste”.
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It is our opinion that these facts profoundly influenced further development
of the whole field. Thus it is not perhaps surprising that if one would isolate
a single feature of Erd4s’ contribution to Ramsey theory then it is perhaps
his continuing emphasis on estimates of various Ramsey-related questions.
From the large number of results and papers we decided to cover several
key articles and comment on them from a contemporary point of view.

I. The 1947 paper [24]. In a classically clear way, Erdés proved
(1) 2%/2 < p(k) < 4*

for every k > 3.

His proof became one of the standard textbook examples of the power of
the probabilistic method, with another example perhaps being the strikingly
simple proof of Shannon of the existence of exponentially complex Boolean
functions.

The paper [24] proceeds by stating (1) in an inverse form: Define A(n)
as the greatest integer such that given any graph G of n vertices, either it
or its complementary graph contains a complete subgraph of order A(n).

Then for A(n) > 3,

logn 2logn

2log 2 Aln) <

Despite considerable efforts over many years, these bounds have been im-
proved only slightly (see [122], [117]). We commented on the upper bound
improvements above. The best current lower bound is

\/56271/2
n

log2 °

r(n) > (1 + 0(1))

which is twice the Erd6s bound (when computed from his proof).

The paper [24] was one of 23 papers which Erdés published within 3
years in the Bulletin of the Amer. Math. Soc.! Already here it is mentioned
that although the upper bound for r(3,n) is quadratic, the present proof
does not yield a nonlinear lower bound. That had to wait for another 10
years.

I1. The 1958 paper [26] — Graph theory and probability. The main
result of this paper deals with graphs, circuits, and chromatic number and
as such does not seem to have much to do with Ramsey theory.
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Yet the paper starts with the review of bounds for r(k, k) and r(3,k)
(all due to ErdSs and Szekeres). Ramsey numbers are denoted as in most
older Erdds papers by symbols of f(k), f(3,k), g(k). He then defines
analogously the function h(k,£) as “the least integer so that every graph
of h(k,¢) vertices contains either a closed circuit of k or fewer lines or the
graph contains a set of £ independent points. Clearly k(3,¢) = f (3,€).

The main result of [26] is that h(k,£) > £1*1/2k for any fixed k > 3
and ¢ sufficiently large. The proof is one of the most striking early uses
of the probabilistic method. Erdés was probably aware of it and this
may explain (and justify) the title of the paper. It is also proved that
h(2k+1,€) < cf**V/k and this is proved by a variant of the greedy algorithm
by induction on ¢. Now after this is claimed, it is remarked that the above
estimation (1) leads to the fact that there exists a graph G with n vertices
which contain no closed circuit of fewer than k edges and such that its
chromatic number is > n?®.

This side remark is in fact perhaps the most well-known formulation of
the main result of [26]:

Theorem 3.1. For every choice of positive integers k, t and ¢, there exists
a k-graph G with the following properties:

(1) The chromatic number of G > t.
(2) The girth of G > ¢.

This is one of the few true combinatorial classics. It started in the
forties with Tutte [20] and Zykov [126] for the case k = 2 and £ = 2 (i.e., for
triangle-free graphs). Later, this particular case was rediscovered and also
conjectured several times [22], [75]. Kelly and Kelly [75] proved the case
k = 2,1 <5, and conjectured the general statement for graphs. This was
settled by Erdds in [26], and the same probabilistic method was applied by
Erdds and Hajnal [35] to yield the general result for k-graphs.

Erdés and Rado [42] proved the extension of k = 2, £ = 2 to transfinite
chromatic numbers while Erdés and Hajnal [34] gave a particularly simple
construction of triangle-free graphs, the so-called shift graphs G = (V, E):
V={(,j);1<i<j<n}and E={(5,5),3,5);i<j=7 <j'}. G,
is triangle-free and x(G,) = [logn].

For many reasons it is desirable to have a constructive proof of Theo-
rem 3.1. This was stressed by Erdés on many occasions. This appeared to
be difficult (see [87]) and a construction in full generality was finally given
by Lovész [82]. A simplified construction has been found in the context
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of Ramsey theory by Nesetfil and Rodl [92]. The graphs and hypergraphs
with the above properties (i), (ii) are called highly chromatic (locally) sparse
graphs, for short.

Their existence could be regarded as one of the real paradoxes of finite
set theory and it has always been felt that this result is one of the central
results in combinatorics.

Recently it has been realized that sparse and complex graphs may be
used in theoretical computer science for the design of fast algorithms. How-
ever, what is needed there is not only a construction of these “paradoxical”
structures but also having reasonable size. In one of the most striking re-
cent developments, a program for constructing complex sparse graphs has
been successfully carried out. Using several highly ingenious constructions
which combine algebraic and topological methods it has been shown that
there are complex sparse graphs, the size of which in several instances im-
proves on the size of the corresponding random objects (see Margulis [84],
Alon [4] and Lubotzky et al. [83]).

In particular, it follows from Lubotzky et al. [83] that there are examples
of graphs with girth £, chromatic number ¢ and the size at most t3¢. A bit
surprisingly, the following is still open:

Problem. Find a primitive recursive construction of highly chromatic lo-
cally sparse k-uniform hypergraphs. Indeed, even triple systems (i.e., k = 3)
present a problem.

II1. 7(3,n) [27]. The paper [27] provides the lower bound estimate on the
Ramsey number r(3,n).

Using probabilistic methods Erdés proved r(3,n) > ﬁ;—n (while the
upper bound r(3,n) < (";1) follows from [45]).

The estimation of the Ramsey numbers r(3,n) was Erdés’ favorite
problem for many years. We find it already in his 1947 paper [24] where he
mentioned that he cannot prove the nonlinearity of r(3,n). Later he stressed
this problem (of estimating r(3,n)) on many occasions and conjectured
various forms of it. He certainly felt the importance of this special case.
How right he was is clear from the later development, which reads as a saga
of modern combinatorics. And as isolated as this may seem, the problem of
estimating r(3,n) became a cradle of many methods and results, perhaps
far exceeding the original motivation.
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In 1981, Ajtai, Komlés and Szemerédi in their important paper [3]
proved by a novel method that r(3,n) < cE";—n. This bound and their
method of proof has found many applications. The Ajtai-Komlés-Szeme-
rédi proof was motivated by yet another Erdés problem from combinatorial
number theory.

In 1941 Erdés and Turdn [47] considered problem of dense Sidon se-
quences (or Bj-sequences). An infinite sequence S = a; < as < --- of
natural numbers is called Sidon sequence if all pairwise sums a; + a; are
distinct. Define

fs(n) =max{z : a; <n}

and for a given n, let f(n) denote the maximal possible value of fs(n). In
[47], Erd6s and Turan proved that for finite Sidon sequences f(n) ~ nl/2
(improving Sidon’s bound of n!/4; Sidon’s motivation came from Fourier
analysis [116]). However for every infinite Sidon sequence S, estimating
the growth of fg(n) is a more difficult problem and as noted by Erdés and
Turén,

lim fs(n)/n'/? = 0.

By using a greedy argument, it was shown by Erdés [25] that fs(n) > n!/3.
(Indeed, given k numbers z; < --+ < z4 up to n, each triple z; < z; < Tk
kills at most three other numbers z, z; + Tj =Tk +T,T+Tk =T, +2
and z; + 7 = z; + z and thus if k + 3(’;) < ck? < n, we can always
find a number x < n which can be added to S. This also proves that any
(inclusion) maximal Sidon subset of {1,...,n} has at least n'/3 elements.
I. Ruzsa recently proved [109] the existence of a maximal Sidon set with
(nlogn)'/® elements. Also, Ajtai, Komlés and Szemerédi showed using a
novel “random construction” the existence of an infinite Sidon sequence S
such that
fs(n) > c- (nlogn)'/3.

An analysis of independent sets in triangle-free graphs is the basis of their
approach and this yields as a corollary the above mentioned upper bound
on r(3,n). (Recently, I. Ruzsa [110] proved the existence of an infinite Sidon
sequence such that fs(n) > n7°(1) where v = v/2 — 1 = 0.41421356.. ..
The best upper bound for fg(n) is of order ¢ (nlog n)1/2.) It should be
noted that the above Erdés-Turdn paper [47] contains the following still
unsolved problem: Let a; < ap < --- be an arbitrary sequence. Denote by
f(n) the number of representations of n as a; + a;. Erdés and Tur4n prove
that f(n) cannot be a constant for all sufficiently large n and conjectured
that if f(n) > 0 for all sufficiently large n then limsup f(n) = oco. This
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is still open. Erdés provided a multiplicative analogue of this conjecture
(i.e., for the function g{n), the number of representations of n as a;a;); this
is noted already in [47]). One can ask what this has to do with Ramsey
theory. Well, not only was this the motivation for [3] but a simple proof of
the fact that limsupg(n) = oo was given by Nesetfil and R6dl in [94] just
using Ramsey’s theorem.

We started this paper by listing the predominance of Erdds’ first works
in number theory. But in a way this is misleading since the early papers of
Erdds stressed elementary methods and often used combinatorial or graph-
theoretical methods. The Erdés-Turdn paper is such an example and the
paper [23] even more so.

The innovative Ajtai-Komlds—Szemerédi paper was the basis for a fur-
ther development (see, e.g., [8]) and this in turn led somewhat surprisingly
to the recent remarkable solution of Kim [77], who proved that the Ajtai-
Komlés-Szemerédi bound is up to a constant factor, the best possible, i.e.,

2

r(n,3) > ¢ n
logn

Thus r(n,3) is the only nontrivial infinite family of (classical) Ramsey
numbers with known asymptotics.

IV. Constructions. Erdés realized early the importance of finding explicit
constructions of various combinatorial objects whose existence he justified
by probabilistic methods (e.g., by counting). In most cases such construc-
tions have not yet been found but yet even constructions producing weaker
results (or bounds) formed an important line of research. For example,
the search for an explicit graph of size (say) 2"/2 which would demonstrate
this Ramsey lower bound has been so far unsuccessful. This is not an en-
tirely satisfactory situation since it is believed that such graphs share many
properties with random graphs and thus they could be good candidates for
various lower bounds, for example, in theoretical computer science for lower
bounds for various measures of complexity. (See the papers [15] and [121]
which discuss properties of pseudo- and quasi-random graphs.)

The best constructive lower bound for Ramsey numbers 7(n) is due to
Frankl and Wilson. This improves on an earlier construction of Frankl [50]
who found a first constructive superpolynomial lower bound.

The construction of Frankl-Wilson graphs is simple:
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Let p be a prime number, and set ¢ = p3. Define the graph Gp = (V,E)
as follows:

V= () =Pt =),
(F,F'}eE iff [FNF|=-1 (mod q).

The graph G, has (pfil) vertices. However, the Ramsey properties of the
graph G, are not trivial to prove: It follows only from deep extremal set
theory results due to Frankl and Wilson [53] that neither G, nor its comple-
ment contain K, for n > (p”_3 ) This construction itself was motivated by
several extremal problems of Erdés and in a way (again!) the Frankl-Wilson
construction was a byproduct of these efforts.

The best constructive results currently known for the off-diagonal case
were obtained by N. Alon and P. Pudlék [7]. Their results in turn use a
constructive bound for the bipartite Ramsey theorem due to Kollar, Rényai
and Szabé (see [79]).

We already mentioned earlier the developments related to Erdés paper
[26]. The constructive version of bounds for r(3,n) led Erdés to geometri-
cally defined graphs. An early example is Erdés-Rogers paper [44] where
they prove that there exists a graph G with £!*%% vertices, which contains
no complete k-gon, but such that each subgraph with £ vertices contains a
complete (k — 1)-gon.

If we denote by h(k,£) the minimum integer such that every graph of
h(k,£) vertices contains either a complete graph of k vertices or a set of ¢
points not containing a complete graph with k& — 1 vertices, then

h(k,€) < r(k,?).

However, for every k > 3 we still have h(k,£) > £+,

This variant of the Ramsey problem is due to A. Hajnal. The con-
struction of the graph G is geometrical: the vertices of G are points on an
n~-dimensional sphere with unit radius, and two points are joined if their
Euclidean distance exceeds /2k/(k — 1).

Graphs defined by distances have been studied by many people (e.g.,
see [98]). The best constructive lower bound on r(3,n) is due to Alon [6]
and gives r(3,n) > cn%2. See also a remarkable elementary construction
[14] giving a weaker result.
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There are also results in the opposite direction which partially explain
the difficulties in finding an explicit construction for good Ramsey graphs

(e.g., see [5] and the development related to quasi-random graphs, e.g., [15],
[121]).

4. RAMSEY THEORY

It seems that the building of a theory per se was never Erdés’ preference.
He was a life long problem solver, problem poser, admirer of mathematical
miniatures and beauties. THE BOOK is an ideal (see the popular account
of this legend in [2]). Instead of developing the whole field he seemed always
to prefer consideration of particular cases. However, many of these cases
turned out to be key cases and somehow theories emerged.

Nevertheless, one can say that Erdés and Rado systematically investi-
gated problems related to Ramsey’s theorem with a clear vision that here
was a new basis for a theory. In their early papers [40], [43] they investi-
gated possibilities of various extensions of Ramsey’s theorem. It is clear that
these papers are a result of extended research and a deep understanding of
Ramsey’s theorem.

It is as if these two papers summarized what was known, before Erdés
and Rado went on with their partition calculus projects reflected by the
grand papers [41] and [36]. But this is beyond the (finite) scope of this
paper. [40] contains an extension of Ramsey’s theorem for colorings by an
infinite number of colors. This is the celebrated Erdés-Rado canonization
lemma:

Theorem 4.1 ([40]). For every choice of positive integers p and n there
exists N = N(p,n) such that for every set X, |X| > N, and for every
coloring ¢ : (if) — N (i.e., a coloring by arbitrarily many colors) there
exists an n-element subset Y of X such that the coloring c restricted to the
set (g) is “canonical”.

Here a coloring of (‘;) is said to be canonical if there exists an ordering
Y =y <+ < yn and a subset w C {1,...,p} such that two n-sets
{21 <--- <2} and {2} <--- < z,} get the same color if and only if z; = 2/
for exactly ¢ € w. Thus there are exactly 27 canonical colorings of p-tuples.
The case w = ¢ corresponds to a monochromatic set while w = {1,...,p}
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to a coloring where each p-tuple gets a different color (such a coloring is
sometimes called a “rainbow” or “total” multicoloring).

Erd6s and Rado deduced Theorem 4.1 from Ramsey’s theorem. For
example, the bound N(p,n) < r(2p,2%,n) gives a hint as to how to prove
it. One of the most elegant forms of this argument was published by Rado
[104] in one of his last papers.

The problem of estimating N(p,n) was attacked by Lefmann and Rodl
[80] and Shelah [115]. One can see easily that Theorem 4.1 implies Ramsey’s
theorem (e.g., N(p,n) > r(p,n — 2,n)) and the natural question arises
as to how many exponentiations one needs. In [80] this was solved for
graphs (p = 2). Shelah [115] recently solved this problem in full generality:
N(p,n) is the lower function of the same height r(p,4,n), ie., (p — 1)
exponentiations.

The Canonization Lemma has found many interesting applications (see,
e.g., [96]) and it was extended to other structures. For example, the canon-
ical van der Waerden theorem was proved by Erdds and Graham [30].

Theorem 4.2 ([30]). For every coloring of positive integers one can find
either a monochromatic or a rainbow arithmetic progression of every length.
(Recall: a rainbow set is a set with all its elements colored differently.)

This result was extended by Lefmann [81] to all regular systems of linear
equations (see also [21]).

One of the essential parts of the development of the “new Ramsey the-
ory” age was the stress on various structural extensions and structure analo-
gies of the original results. A key role was played by the Hales—Jewett the-
orem (viewed as a combinatorial axiomatization of van der Waerden’s the-
orem), Rota’s conjecture (the vector-space analogue of Ramsey’s theorem),
and Graham-Rothschild parameter sets, all dealing with new structures.
These questions and results displayed the richness of the field and attracted
a lot of attention.

It seems that one of the significant turns appeared in the late 60’s when
Erdés, Hajnal and Galvin started to ask questions such as “which graphs
contain a monochromatic triangle in any 2-coloring of its edges”. Perhaps
the essential parts of this development can be illustrated with this particular
example.

We say that a graph G = (V,E) is t-Ramsey for the triangle (i.e.,
K3) if for every coloring of E by t colors, one of the colors contains a
triangle. Symbolically we denote this by G — (K3)f. This is a variant of
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the Erdés—Rado partltlon arrow. Ramsey’s theorem gives us Ky — (K3)

(and Ky (g43) = (K 3) ). But there are other essentially different examples.
For example, a 2-Ramsey graph for K3 need not contain Kz. Graham
[62] constructed the unique minimal graph with this property: The graph
K3+ Cs (a trxangle and pentagon completely joined) is the smallest graph
G with G — (K;:,)2 which does not contain a Kg. Yet K3 + C5 contains
K3 and subsequently Pésa, Van Lint, Graham and Spencer constructed a
graph G not containing even a Kjs, with G — (Kg)g. Until recently, the
smallest example was due to Irving [72] and had 18 vertices. Very recently,
two more constructions appeared by Erickson [48] and Bukor [13] who found
examples with 17 and 16 vertices (both of them use properties of Graham’s
graph).

Of course, the next question which was asked is whether there exists a
Ky-free graph G with G — (Kg)g. This question proved to be considerably
harder and it is possible to say that it has not yet been solved completely
satisfactorily.

The existence of a Ky-free graph G which is ¢-Ramsey for K3 was
settled by Folkman [49] (t = 2) and Nesetfil and R6dl [90]. The proofs
are complicated and the graphs constructed are very large. Perhaps just to
be explicit Erdés [29] asked whether there exists a Ky-free graph G which
arrows a triangle with < 10 vertices. This question proved to be very
accurate and it was finally (extending [51]) shown by Spencer [118] that
there exists such a graph with 3 x 10® vertices. Of course, it is possible that
such a graph exists with only 1000 vertices!

The proof of this statement is probabilistic. Probabilistic methods were
not only applied to get various bounds for Ramsey numbers. Recently,
the Ramsey properties of the Random Graph K(n,p) were analyzed by
Ro6dl and Rucinski and the threshold probability for p needed to guarantee
K(n,p) — (K3)f with probability tending to 1 as n — oo, was determined
in a series of important papers (see [101], [99], [100], [102] and also the
recent more general approach in [54]).

Many of these questions were answered in a much greater generality and
this seems to be a typical feature for the whole area. These structural results
have found several applications in mathematical logic and model theory, e.g.,
see [86, 89]. On the other hand these more general statements explain the
unique role of the original Erdés problem. Let us be more specific. We need
a few definitions: An ordered graph is a graph with a linearly ordered set
of vertices. Isomorphism of ordered graphs means isomorphism preserving
orderings. If A, B are ordered graphs (for now we will find it convenient to
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denote graphs by A, B,C,...) then (ﬁ) will denote the set of all induced
subgraphs of B which are isomorphic to A. We say that a class K of graphs
is Ramsey if for every choice of ordered graphs A, B from K there exists
C € K such that C — (B)‘24. Here, the notation C' — (B);1 means: for
every coloring ¢ : (i) — {1,2} there exists B’ € (g) such that the set (i’)
is monochromatic (see, e.g., [89]). Similarly we say that a class K of graphs
is canonical if for every choice of ordered graphs A, B from K there exists

C € K with the following property: For every coloring ¢ : (i) — N there

exists B’ € (%) such that the set (ﬁl) has a canonical coloring.

Denote by Forb (Kj) the class of all Kj-free graphs. Then we have the
following:

Theorem 4.3. For a hereditary class K of graphs the following statements
are equivalent:

1. K is Ramsey;
2. K is canonical;

3. K is a union of the following 4 types of classes: the class Forb (K}),
the class of complements of graphs from Forb (K}), the class of Turdn
graphs (i.e., complete multipartite graphs) and the class of equivalences
(i.e., complements of Turdn graphs).

(1. < 3. is proved in [88], 2. = 1. is easy, and one can prove 1. = 2.
directly along the lines of Erdés—Rado proof of canonization lemma.) Thus,
as is often the case for Erd6s’ questions, the triangle-free graphs were not
just any case but rather the typical case.

From today’s perspective it seems to be just a natural step to consider
Ramsey properties of geometrical graphs. This was initiated in a series of
papers by Erdés, Graham, Montgomery, Rothschild, Spencer and Straus
([31], [32], [33]). Let us call a finite configuration C of points in E* Ramsey
if for every r there is an N = N(r) is that in every r-coloring of the points of
EY, a monochromatic congruent copy of C is always formed. For example,
the vertices of a unit simplex in E" is Ramsey (with N(r) = n(r — 1) + 1),
and it is not hard to show that the Cartesian product of two Ramsey
configurations is also Ramsey. More recently, Frankl and Rédl [52] showed
that any simplex in [E* is Ramsey (a simplex is a set of n + 1 points having
a positive n-volume).

In the other direction, it is known [31] that any Ramsey configuration
must lie on the surface of a sphere (i.e., be “spherical”). Hence, 3-collinear
points do not form a Ramsey configuration, and in fact, for any such set Cs,
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EN can always be 16-colored so as to avoid a monochromatic congruent copy
of C3. It is not known if the value 16 can be reduced (almost certainly it
can). The major open question is to characterize the Ramsey configurations.
It is natural to conjecture that they are exactly the class of spherical sets.
Additional evidence of this was found by Kfiz [74] who showed for example,
that the set of vertices of any regular polygon is Ramsey. A fuller discussion
of this interesting topic can be found in [63].

5. ADVENTURES IN ARITHMETIC PROGRESSIONS

Besides Ramsey’s theorem itself the following result provided constant mo-
tivation for Ramsey Theory:

Theorem 5.1 (van der Waerden {124]). For every choice of positive integers
k and n, there exists a least W (k,n) = W such that for every partition of
the set {1,2,...,W} into k classes, one of the classes always contains an
arithmetic progression with n terms.

The original proof of van der Waerden (which developed through dis-
cussions with Artin and Schreier — see [125] for an account of the discovery)
and which is included in an enchanting and moving book of Khinchine [76]
was until recently essentially the only known proof. However, interesting
modifications of the proof were also found, the most important of which is
perhaps the combinatorial formulation of van der Waerden’s result by Hales
and Jewett [67].

The distinctive feature of van der Waerden’s proof (and also of Hales—
Jewett’s proof) is that one proves a more general statement and then uses
double induction. Consequently, this procedure does not provide a primitive
recursive upper bound for the size of W (in van der Waerden’s theorem). On
the other hand, the best bound (for n prime) is (only!) W(n + 1) > n2™, n
prime (due to Berlekamp [11]). Thus, the question of whether such a huge
upper bound was also necessary, was and remains to be one of the main
research problems in the area.

There are several approaches to this difficult problem. One possibility
is to try to devise a new proof of the van der Waerden theorem which would
avoid the double induction. Surprisingly, in 1988 Shelah [114] found such
proof: he gave a proof of both the van der Waerden and the Hales-Jewett
theorem which provided a primitive recursive upper bound for W(k,n).
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However the bound is still very large, being of the order of the fifth level
in the Ackermann hierarchy — the “tower of tower functions”. Even for

2
the solution of the modest looking conjecture W(2,n) < 2° }n, the first
author of this paper offered $1000.

A solution of this came from entirely different approach which goes back
to the Erd6s and Turan 1936 paper [46].

For the purpose of improving the estimates for the van der Waerden
numbers, Erd6s and Turdn had the idea of proving a stronger — now called
a density — statement. They considered (how typical!) the particular
case of 3-term arithmetic progressions and for a given positive integer N,
defined r(N) (their notation) to denote the maximum number elements of
a sequence of numbers < N which does not contain a 3-term arithmetic
progression. They observed the subadditivity of the function r(N) (which
implies the existence of a limiting value of r(N)/N) and proved r(N) <
(3 +¢) N forall N > N(e).

After that they remarked that probably r(N) = o(N). And in the
last few lines of their short paper they define numbers ry(/N) to denote the
maximum number of integers less than or equal to N such that no £ of
them form an arithmetic progression. Although they do not ask explicitly
whether r,(N) = o(N) (as Erdés did many times since), this is clearly in
their mind as they list consequences of a good upper bound for r¢(N): long
arithmetic progressions formed by primes and a better bound for the van der
Waerden numbers.

As with the Erd6s—Szekeres paper [45], the impact of the modest Erdés—
Turdn note [46] is hard to overestimate. Thanks to its originality, both in
combinatorial and number-theoretic contexts, and to Paul Erdds’ persis-
tence, this led eventually to beautiful and difficult research, and probably
beyond Erdés’ expectations, to a rich general theory. We wish to briefly
mention some key points of this development.

Good lower estimates for r(N) were obtained soon after by Salem and
Spencer [111] and Behrend [9] which still gives the best bound. These
bounds recently found a surprising application in an unexpected area,
namely in the fast multiplication of matrices (Coppersmith, Winograd [19]).

The upper bounds and 7(N) = o(N) appeared to be much harder. In
1953 K. Roth [106] proved r3(N) = o(N) and after several years of partial
results, E. Szemerédi in 1975 [93] proved the general case

r¢e(N) = o(N) for every L.
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This is generally recognized as the single most important Erdds solved
problem, the problem for which he has paid the largest amount. By now
there are more expensive problems but they have not yet been solved.
And taking inflation into account, possibly none of them will ever have
as an expensive solution. Szemerédi’s proof changed Ramsey theory in
at least two aspects. First, several of its pieces. most notably the so-
called Regularity Lemma, proved to be extremely useful in many other
combinatorial situations (see, e.g., [18], [93], [101]). Secondly, perhaps due
to the complexity of Szemerédi’s combinatorial argument, and the beauty of
the result itself, an alternative approach was called for. Such an approach
was found by H. Furstenberg [55], [56] and developed further in many aspects
in his joint work with B. Weiss, Y. Katznelson and others. Let us just
mention two results which in our opinion best characterize the power of this
approach: In [58] Furstenberg and Katznelson proved the density version of
Hales-Jewett theorem. More recently, Bergelson and Leibman [10] proved
the following result (conjectured by Furstenberg):

Theorem 5.2 ([10]). Let p1,...,pr be polynomials with rational coef-

ficients taking integer values on integers and satisfying p;(0) = 0 for
i1 = 1,...,k. Then every set X of integers of positive density contains
for every choice of numbers vy,...,vi, a subset

p+pi(dv, p+pa(d)ve, ..., b+ pr(d)ve

for some p and d > 0.

Choosing p;(z) = = and v; = i, we get the van der Waerden theorem.
Already, the case p;(z) = z2 and v; = i was open for several years (this gives
long arithmetic progressions in sets of positive density with their differences
being some square).

For none of these results are combinatorial proofs known. Instead,
they are all proved by a blend of topological dynamics and ergodic theory
methods, proving countable extensions of these results. For this part of
Ramsey theory this setting seems to be most appropriate. However, it is a
long way from the original Erdés-Turdn paper.

Despite of these advances the main motivation and hope of Erdés—
Turdn was not fulfilled by these proofs: Szemerédi’s proof uses not only the
van der Waerden theorem but also the Regularity Lemma which implies
bounds involving the tower function (see [59]). The Furstenberg proof is
even less effective (however the version of the ergodic proof given in [57] is
an accessible proof of Szemerédi’s Theorem).
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But there is still yet another way: the first step towards the Erdés—
Turdn density problem was given by K. F. Roth in 1953 [106] (where he
gave a proof of r3(N) = o(N)) by analytical techniques (exponential sum
estimates). It took another nearly 40 years until T. Gowers showed that
these analytic techniques generalize to the full proof of the Erdds—Turan
density problem [60], [61]. His approach extends profoundly Roth’s proof
and uses deep results from additive number theory (most notably Freiman’s
Theorem with its strengthenings due to I. Ruzsa, [107], [108], see also [86]).

The important work of Gowers [60], [61] was cited in his 1998 Fields
Medal citation. It not only gives the remarkable third proof of Szemerédi’s
theorem but also presents a fulfillment of the old hopes of Erdés and Turdn:
Exactly the (quantitative) density theorems yield the best bound for van
der Waerden'’s theorem. The current best bound for W (2, n) is a tower of 2’s
of height 5 topped by n+9. (The lower bound is still a simple exponential.)
But to insiders this is a dramatic improvement and a very small bound
(which of course settles the above-mentioned challenge of the first author).

Let us close this section (and this paper) with a recent example. In
1983 G. Pisier [97] formulated (in a harmonic analysis context) the following
problem: A set of integers z; < z2 < --- is said to be independent if all
finite subsums of distinct elements are distinct. Now let X be an infinite
set and suppose for some £ > 0 that every finite subset Y C X contains a
subset Z of size > ¢|Z| which is independent. Is it then true that X is a
finite union of independent sets?

Despite many efforts and partial solutions the problem is still open.
It was again Paul Erd6s who quickly realized the importance of the Pisier
problem (e.g., see the recent papers of Erdds, Nesetfil and Rodl [38], [39)
in which “Pisier type "problems are studied). For various notions of an
independence relation, the following question was considered: Assume that
an infinite set X satisfies for some € > 0, some hereditary density condition
(i.e., we assume that every finite set Y contains an independent subsubset
of size > ¢|Y'|). Is it then true that X can be partitioned into finitely many
independent sets?

Positive instances (such as collinearity, and linear independence) as well
as negative instances (such as Sidon sets) were given in [38], [39]. Also
various “finitization versions” and analogues of the Pisier problem were
answered in the negative. But at present the original Pisier problem is still
open. In a way one can consider Pisier type problems as dual to the density
results in Ramsey theory: One attempts to prove a positive Ramsey type
statement under a strong (hereditary) density condition. This is exemplified
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in [39] by the following problem which is perhaps a fitting conclusion to this
paper surveying 60 years of Paul Erdés’ service to Ramsey theory.

The Anti-Szemerédi Problem ([39]). Does there exist a set X of pos-
itive integers such that for some £ > 0 the following two conditions hold
simultaneously:

(1) For every finite Y C X there exists a subset Z C X, |Z] > ¢|Y|, which
does not contain a 3-term arithmetic progression;

(2) Every finite partition of X contains a 3-term arithmetic progression in
one of its classes.

It seems that after all these years, Ramsey Theory, resting firmly on
Erdés’s pioneering and fundamental work, is very much alive and well.
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