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Abstract

Euclidean Ramsey theory typically deals with geometrical prob-
lems in which some unavoidable structure remains whenever a suf-
ficiently large (geometrical) object is partitioned into finitely many
parts. In this note, we survey a number of open problems in this
subject.

1 Introduction

Ramsey theory is a branch of combinatorics that has often been character-
ized by the phrase ”Complete disorder is impossible”. More precisely, it is
the study of structure which must be retained no matter how a sufficiently
large object is partitioned into a (usually) finite number of parts [5]. Classic
theorems of this type are Ramsey’s theorem, van der Waerden’s theorem on

arithmetic progressions, Schur’s theorem (on integer solutions of z +y = z,
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the Hales-Jewett theorem (on combinatorial lines), for example, as well as
the (pre-historic) Pigeon-hole principle. In Euclidean Ramsey theory, the
structures and properties are geometrical in nature. For example, it is true
that if the points in Euclidean 5-space are partitioned into two sets then one
of the sets must contain the vertices of a unit square. More generally, for any
integer r, if the points of Euclidean n-space are partitioned into r parts, and
n is sufficiently large, then at least one of the parts must contain the vertices
of a unit square. Just how the minimum value of n for which this is true de-
pends on 7 is still not known. This is a typical problem in Euclidean Ramsey

theory, and we will discuss this and many others in subsequent sections.

We first give some basic definitions. For a finite set X C E*, let Cong(X)
denote the set of all subsets of E¥ which are congruent to X under some
Euclidean motion. We will say that X is Ramsey if for any integer r, there
is a least integer N(X,r) such that if N > N(X,r) then for any partition of
EN = CiUC,yU...UC,, we have X' C C; for some X’ € Cong(X) and some
i. If we think of the partition as an r-coloring of EV, then we often say that
EY contains a monochromatic copy of X. We denote this property by the
usual “arrow” notation ENY — X. The negation of this statement is denoted

by EN 4 X.

It is not hard to see that any Ramsey set must be finite. Furthermore,
it follows from compactness arguments (where we are using the Axiom of
Choice) that if X is Ramsey, then in fact there must be a finite set S such
that S — X. (More about this later).

A more restricted notion is that of being r-Ramsey. This just means that



a monochromatic copy of X must occur whenever the underlying set S is
r-colored. In this case, we write S — X. The negation of this statement is

written as S /5 X.

Conjecture 1 For any non-equilateral triangle T, (i.e., the set of 3 vertices

of T),
E2 2 T.

Conjecture 2 (stronger) For any partition E2 = C; U C,, every triangle
occurs (up to congruence) in Cy, or else the same holds for Cy, with the

possible exception of a single equilateral triangle.

It is easy to see how to prevent any particular equilateral triangle from
occurring in a 2-coloring of the plane by using alternating color half-open

strips of width equal to the altitude of the triangle.

Conjecture 3 For any triangle T,
E ST

There are many positive results known for triangles (e.g.,see [6]). For
example, it is known that E2 5 T if

(i) T has angles (o, 2a, 7 — 3a) with 0 < a < 7/3,

(i) T has sides (a, b, c) satisfying



2 =a?+2b with a < 2b

On the other hand, E3 2, T for any non-degenerate triangle 7', and
E3 2 T for any right triangle T.

It is known that for any n, E* can be 4-colored to prevent the degenerate
(1,1,2) triangle from occurring monochromatically. If Conjecture 2 is true,
then this number can be reduced to 2. It is known that it cannot be reduced
to 1. More generally, it is known [2] that for a and b, and any n, E™ can
be 16-colored to prevent the degenerate (a,b,a + b) triangle from occurring

monochromatically.
Conjecture 4 The number 16 above can be reduced.

In other words, there is some minimum value r < 16 such that any degen-
erate (a, b, a+b) triangle can be prevented from occurring monochromatically

by an appropriate r-coloring of E*. Could this minimum value be 27

One might well ask about the situation for even simpler sets than triangle.
The simplest interesting set of this type is the set U consisting of two points
a unit distance apart. The minimum number of colors needed for coloring E™
so that no 2 points have the same color is called the chromatic number of E
and is denoted by x(E"). Even for n = 2, the value of x is quite mysterious.
The best bounds currently known (and these haven’t changed in more than
50 years!) in this case are 4 < x(E?) < 7. It is certainly not necessary
to point out to readers of this journal any facts concerning the history and

current status of this problem (which due to E. Nelson in 1950) since the



Editor Alexander Soifer has written a scholarly treatment of the subject in

this journal [11, 12, 12].

The best bounds known for n = 3 are 6 < x(E3) < 15 due to Nechustan
[19] and Béna-Téth [21], respectively. The best general bounds for arbitrary

n are (see [29]):
(6/5+0(1))" <E™ < (3 +0(1))"

An interesting recent result of O’Donnell [15, 16], perhaps giving a small

amount of evidence that x(E?) > 4, is the following result:

Theorem 1 For any g > 0, there is a 4-chromatic unit distance graph in E?

with girth greater than g.

2 Ramsey Sets

Recall that X is said to be Ramsey if for any number of colors r, any r-
coloring of any sufficiently high-dimensional Euclidean space must always
contain a monochromatic copy of X. It is not difficult to show that if X and
Y are Ramsey then so is the Cartesian product X x Y is also Ramsey. This
implies that every acute triangle is Ramsey. In fact, Frankl and Rodl [17]
have shown that every non-degenerate simplex is Ramsey. For many years
it was not known whether something as simple as the set of 5 vertices of a

regular pentagon was Ramsey. This was finally settled by a striking theorem

of Kiiz [18]:



Theorem 2 Suppose X C EN has a transitive solvable group of isometries.

Then X is Ramsey.

In fact, the same conclusion holds under the weaker hypothesis that X has a
transitive group of isometries that has a solvable subgroup with at most two

orbits.

In the other direction, it was shown in [2] that any Ramsey set must lie on
the surface of a sphere (in some dimension). Such sets we call spherical. This
shows in particular that three collinear points cannot be a Ramsey set (as
we have pointed out earlier). The big conjecture here is that this necessary

condition is also sufficient.

Conjecture 5 ($1000). Every spherical set is Ramsey.

Any easier conjecture is this:

Conjecture 6 ($100). Every 4-point subset of a circle is Ramsey.

In [17], Frankl and Rodl define the following stronger concept: A set A is
said to be super-Ramsey if there exist positive constants ¢ and € and subsets
X = X(N) C E¥ for every N > No(X) such that |X| < ¢V, and it is true
that |Y| < | X|/(1 + €)" holds for all subset Y C X containing no copy of A

In [17] they show that every non-degenerate simplex is actually super-
Ramsey. It may in fact be true that the super-Ramsey sets are just the

spherical sets.



3 Sphere-Ramsey Sets

Let us denote by S¥(p) a sphere in EV with radius p. We will say that X
is sphere-Ramsey if for all r, there exist N = N(X,r) and p = p(X,r) such
that

SN(p) 5 X.

In this case we write SV¥(p) — X. Note that being sphere-Ramsey is a
stronger condition than being Ramsey. It is easy to see that if X and Y
are sphere-Ramsey then so is X x Y. For a spherical set, let p(X) denote
the radius of the smallest sphere containing X. In [22], Matousék and Rodl

prove the following spherical analogue of simplices being Ramsey:

Theorem 3 For any simplex X with p(X) =1, any r, and any € > 0, there
exists N = N(X,r, €) such that

SN(1+¢) 5 X.

It turns out that the “blow-up factor” of (1 + ¢) is really needed, as the

following result shows:

Theorem 4 [9] Let X = z1,29,...,2m C EN such that:

(i) for some nonempty I C 1,2,...,m, there erist nonzero a;,i € I, with
Z a;,r; = NS EN
i€l



and

(i) for all nonempty J C I,

Zaj 7é0

jed

Then X is not sphere-Ramsey.
We close this section with a fundamental conjecture:

Conjecture 7 ($1000). If X is Ramsey then X is sphere-Ramsey.

4 Edge-Ramsey Sets

Suppose we color the line segments in some Euclidean space and ask the
natural Ramsey questions. That is, given some fixed finite configuration
E of line segments in E", when is it the case that for any r, there is an
integer N(FE,r) such that for any r-coloring of the line segments in EV with
N > N(E,r), there is always a monochromatic “copy” of E which is formed.
In this case, we will say that E is edge-Ramsey. The basic facts which are

known in this case are:

Theorem 5 /2, 3, 4] If E is edge-Ramsey then all edges of E must have the

same length.

Theorem 6 [9/ If E is edge-Ramsey then the end-points of the edges of E

must lie on two spheres.



Theorem 7 [9] If the end-points of E do not lie on a sphere and the graph
formed by E is not bipartite then E is not edge-Ramsey.

Theorem 8 [2/] The edge set of an n-cube is edge-Ramsey.

Theorem 9 [24] The edge set of a reqular n-gon is not edge-Ramsey if n # 6.

Conjecture 8 The edge set of a reqular hezagon is not edge-Ramsey.

The situation is actually rather mysterious since Cantwell [23, 24] has

pointed out that:

(i) If ABC is a (1,1,2) triangle with |AB| = |BC| = 1 then the set E
consisting of the two line segments AB and BC is not edge-Ramsey, even
though its graph is bipartite and the three end-points A, B and C lie on two

spheres.
(i) There exist non-spherical edge sets which are edge-Ramsey.
(Big) Problem Characterize edge-Ramsey configurations

At present, we have no plausible conjecture.

5 Variations

In this final section we mention a number of variations of the standard Eu-

clidean Ramsey problems.



We start with asymmetric Ramsey theorems. Here, we typically have two
configurations, say X; and X,. If it is true that for any 2-coloring of EV,
either a copy of X; occurs in color 1, or a copy of X, occurs in color 2, then
we denote this by EVY 2, (X1, X3). There only sporadic results known here.

We mention a few:
(a) B2 2 (T}, Ts) where T} is any subset of E2 with i points, i = 2, 3.
(b) E? 2, (T, Q%) where T is an isoceles right triangle and Q? is a square.

(c) E2 2 (P>, T,) where P, is a set of two points at a distance 1, and T}

is any set of 4 points.
(d) There is a set T of 8 points in E2 such that E2 2 (P, Ts). (see [30]).

It is not known if there are sets with fewer than 8 points with this prop-

erty.

We close with a brief discussion in which we allow infinitely many colors.
As one might imagine, such results usually have a strong set-theoretic nature,
and often depend on just which axioms one is using for set theory. For

example:
Theorem 10 [26] For all N, EN 7‘& T where T is any fized triangle.

Schmerl [26] has also shown that there is a partition of EV into countably

many parts such that no part contains the vertices of any isoceles triangle.

Theorem 11 [27] Assuming the Continuum Hypothesis, it is possible to par-
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tition B2 into countably many parts, none of which contains the vertices of a

triangle with rational area.

Theorem 12 [28] The existence of a partition of E? into countably many
sets, none of which contains the vertices of a right triangle is equivalent to

the Continuum Hypothesis.

In fact, the importance of the particular axioms being used make a surpis-
ing difference for the question of determining the chromatic number of the
plane, as recently shown by Shelah and Soifer [14]. In particular, that show
that if in ZFC, the Axiom of Choice is replace by some different (but equally
consistent) axioms (one of which is the axiom which assets that every subset
of R is Lebesgue measurable), then we lose the usual compactness arguments,
and in fact, in this case, if every finite unit distance graph has chromatic

number at most 4, then E? must have chromatic strictly greater than 4.

I close with 3 classic problems, to which modest rewards have been at-

tached.
Conjecture 9 (Erdés-Szekeres [1]) ($1000) Any set of 2% + 1 points in
the plane in general position (i.e., having no 3 collinear points) must contain

the vertices of a convex n-gon.

If true, this value would be best possible. The best upper bound currently
known is (¥'-7) + 2, due to Téth and Valtr [31].
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Conjecture 10 (Graham [10]) ($1000) If A C N? with 37, 1, 1/(2* +
y?) = oo then A must contain the 4 vertices of an azes-parallel square (where

N denotes the set of natural numbers).

This is a two-dimensional generalization of one of Erd6s’ most well-known

conjectures:

Conjecture 11 Erdds ($3000) If A C N satisfies ., 1/a = oo then A

must contain arbitrarily long arithmetic progressions.

It is not even known if this hypothesis implies that A has a 3-term arith-

metic progression! Clearly, much remains to be done.
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