"“We give a formula for the optimal sequence of perfect shuffles to bring a card

at position p to the top (or indeed, to any position). This solves a fifty-year-old

problem of Elmsley. The argument illustrates elementary group theory and

shows how a simple card trick can lead to the edge of what is known.”

The Solutions to
Elmsley’s Problem

Persi Diaconis and Ron Graham
Stanford University and University of California, San Diego

handful of magicians and gamblers can shuffle cards
perfectly. This means cutting the deck exactly in half
and riffling the cards together so that they alternate

perfectly. Figure 1 shows a perfect shuffle of a deck of ten
cards labeled from top to bottom by 0, 1,2, ..., 9.
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Figure 1. out shuffle of a ten card deck.

Perfect shuffles are of many uses. For example, eight
perfect out shuffles of a 52 card pack bring the deck back to its
original order. In Figure 1, the original top card (labeled 0)
stays at the top of the pack. (Hence, for an eut shuffle, the top
card remains outside.) There is a second type of perfect
shuffle, called an in shuffle, where the original top card winds
up second from the top (imside) as in Figure 2.

Here is an application of in shuffles. Imagine the four Aces
sitting on top of the deck. After one in shuffle, they are every
second card. After two in shuffles, they are every fourth card.
Hence, if the deck is dealt into four hands, one card at a time,
the dealer gets the Aces.

For these and other reasons, gamblers and magicians have
studied the properties of perfect shuffles for close to 300 years.
We develop some properties we will need in the next section.

It is natural to ask what can be done by combining in and
out shuffles. For example, start with the four Aces on top. Is
there some combination of in and out shuffles that places the
Aces to be every fifth card? Here is a dazzling discovery of
Alex Elmsley, a British computer scientist. Consider the
problem of bringing the original top card (at position 0) to
position p by perfect shuffles. Elmsley observed that
expressing p in binary, interpreting ‘0’ as an out shuffle and
‘1’ as an in shuffle does the job, irrespective of the deck size.
For example, to bring 0 to 6, write 6 = 110 and perform in, in,
out. If you try this with actual cards, remember that we start
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with 0, so that 6 is the position of the seventh card from the
top. Since most of our readers are not accomplished card
handlers, we later describe easy-to-do variants involving
inverse shuffles so that the reader can follow along with cards
in hand.

It is natural to try to solve the inverse problem: Is there a
sequence of shuffles that brings a card at position p to the top?
This turns out to be more difficult. Indeed, Elmsley, writing in
the June 1957 issue of the British magic journal Pentagram
writes: “I have so far been unable to discover a comparatively
simple way of bringing a card to the top of a deck that is not a
power of 2, e.g., 52. The only method I have found is much too
complicated for practical use.” Over the past 50 years,
magicians and recreational mathematicians have studied
‘Elmsley’s Problem.’ There have been special charts published
giving the shortest sequence for various deck sizes. Recently,
computer programs have been written and sold for doing the
job.

In this article, we give a motivated development of our
solution, and give a formula for the shortest sequence of in
and out shuffles required to bring a card at position p to
position g. We conclude this introduction with a brief
description (and example) of our algorithm.

Algorithm to bring a card at pesition p to position 0.
Working with a deck of 2n cards, define r by 21 < 2n <27 (so
if2n=52thenr=6).For0<p < 2n—1,lett =|(p +1)27/2n]
where |x] denotes the largest integer less than or equal to x. For
p=0,sett=0; forp=2n-1,sett=2r— 1. Express ¢ in binary
ast=t, |t,_,...1it; (with ;= 1 or 0). Define “correction terms”
s=2nt - 2'p =5, 15, 5...5,85 (with s; = 0 or 1). The shuffling
sequence is ¢, ; + S, ;.5 +5,9, ..., Iy + Sy, Where each sum is
in binary (without carries) with 1 as in and O as out. Any
trailing Os can be deleted.

Example.2n =52, p=35.Thenr=6,

2" || 3664 | _ 44
z_[—n J_L—Sz J_44_101100
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and s = 2nt — 2"p = 2288 — 2240 = 48 = 110000. Now, the
coordinatewise sum of 101100 and 110000 is 011100 which
translates to out, in, in, in (the final two out shuffles do
nothing to the top card). Further examples can be found
throughout this article.

Note that when the deck size 2n equals 27, then the
correction term s = 0, i.e., all the s; = 0. In this case, no
corrections are needed, which explains why decks of these
sizes are especially nice.

Basic Properties of Perfect Shuffles

In this section we introduce basic properties of two
permutations: the in and out shuffles. Throughout, we work
with a deck of 2n cards, with positions labeled from 0 (top) to
2n — 1 (bottom).

An out shuffle O is the permutation that sends the card in
position i to position 2i —1 (mod 2n —1),for0<i<2n—1,and
keeps the bottom card on the bottom. This can be represented
as

_J2i(mod2n-1) if o0<i<2n-1,
o@) = (1)

2n—1 if i=2n-1.

For example, after an out shuffle, 10 cards initially in
positions 0,1,2,3,4,5,6,7,8,9 are now in positions 0, 2, 4,
6,8,1,3,5,7,9 (see Figure 1).

Similarly, for an in shuffle I,

I)=2i+1(mod2n+1),0<i<2n-1. 2)

For example, after an in shuffle, 10 cards in positions 0, 1, 2,
3,4,5,6,7,8,9 now are in positions 1, 3,5,7,9,0,2,4, 6, 8.
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Figure 2. in shuffle of a ten card deck.

An out shuffle fixes the top and bottom cards and it is easy
to see that the rest of the cards mix as an in shuffle on a deck
of size two fewer. It follows that properties of repeated in
shuffles can be understood via properties of repeated out
shuffles. For example, consider the following problem: After
how many out shuffles will a deck of size 2n recycle. If O
stands for an out shuffle, let O? stand for two out shuffles.
From (1) above, there is a simple formula:

o |4i(mod2n—1) if 0<i<2n-1,
071 = 3)

2n—1 if i=2n-1.

Similarly, if O* stands for k repeated out shuffles,

o |25 (mod2n—1) if 0<i<2n-1,
0 ()= @)

2n—-1 if i=2n-1.

The deck returns after k shuffles if and only if O*(i) = i
(mod 2n -1), for 0 < i <2r —1. From (4), this happens if and
only if 2* =1 (mod 2n — 1). The least such k = 1 is called the
order of 2 (mod 2n -1). For example, when 2xn =52, 2n—1=51,
and the successive powers of 2 (mod 51) are 2,4, 8, 16,32, 13,
26, 1 that is, 28 =256 = 1 (mod 51), or ord, (51) = 8, so eight
out shuffles recycle the deck. Likewise, eight in shuffles
recycle a deck of size 50. The reader may show (by direct
calculation or Fermat’s little theorem) that 2°2 =1 (mod 53).
Further, 2 is a primitive root modulo 53 (so 52 is the least such
power). This says that a deck of size 54 recycles after 52
outshuffles, or equivalently, when ignoring the top and bottom
of these 54 cards, that a deck of size of 52 recycles after 52 in
shuffles. We are embarrassed to report that we first learned this
by actually shuffling the cards.

Is there a pattern for the number of shuffles needed to
recycle? Here are the numbers for decks of sizes 2 to 54.

decksize2n 2 4 6 8 10 12 14 16 18 20 22 24 26
ord,(2n-1) 1 2 4 3 6 10 12 4 8 18 6 11 20
decksize2n 28 30 32 34 36 38 40 42 44 46 48 50 52 54
ord,(2n—1) 18 28 5 10 12 36 12 20 14 12 23 21 8 52

Table 1. Values of ord,(2n 1) for deck sizes 2n. These values
give the number of out shuffles needed to recycle a deck of
size 2n and the number of in shuffles needed to recycle a deck
of size 2n — 2.

Is there a pattern in these numbers? The first surprise is that
the numbers are not increasing. Larger decks can recycle after
fewer shuffles. Thus, a 16 card deck recycles after 4 out
shuffles while a 14 card deck requires 12 out shuffles. Decks
of size 2¥ recycle after k out shuffles, since 2% =1 (mod 2¢—1).
Aside from these, very little is known; the order of 2 is one of
the mysteries of mathematics. Consider the question of
whether there are arbitrarily large integers 2» such that 2 is a
primitive root modulo 2n — 1. This is a famous conjecture of
E. Artin. A well-studied, and completely intractable, problem!
It is known to be true if the Generalized Riemann Hypothesis
is true. We find it tantalizing that simple questions about
shuffling cards can lead to questions well beyond modern
mathematics.

Returning to Elmsley’s problem, we initially thought it too
would be intractable, roughly equivalent to the problem of
“finding logarithms in finite fields.” This last problem lies at
the root of several widely used cryptographic protocols. After
all, if there were a simple rule, someone should have found it
in over 50 years of fooling around.

WWW.MAA.ORG/MATHHORIZONS 23



MATH HORIZONS

In The Mathematics of Perfect Shuffles, the authors,
working with Bill Kantor, determined the structure of the
group (I,O) generated by arbitrary in and out shuffles. From
this work it follows (and, as shown below, is easy to see
directly), that for any p and g, there is a sequence of in and out
shuffles sending the card in position p to position g. These
proofs give no insight into the shortest way. In fact, our
arguments below will settle this problem by finding all perfect
shuffle sequences that move card p to position g.

Before proceeding, it will be useful to introduce the two
inverse shuffles O~! and I'!. These “undo” or “unshuftle” the
results of O and I. They can easily be carried out with a deck
of cards in hand. Hold the cards face down as if dealing in a
card game. Deal the cards face up, alternately, into two piles,
dealing left, right, left, right, ..., until all the cards have been
dealt.
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Figure 3. Ten cards dealt alternately into two face-up piles.

To complete O, place the right pile on the left pile (so that
the original top and bottom cards remain on the bottom and
top, respectively). To complete I"!, pick up the piles the other
way (so that the original top and bottom cards wind up in the
middle). In both cases, finish by turning the deck face down.
We can write a formula for O~! and I"! as permutations of the
set{0,1,2,...,n—1} by:

i .
[EJ if [ iseven,
07'(i)=1, (5)
[iJ +n if i isodd,
2
[%J +n if i iseven,
I''()= . (6)
[iJ if i isodd
2

As mentioned earlier, l_xJ denotes the largest integer less
than or equal to x.

If out shuffles recycle after £ and in shuffles recycle after j,
then O~! = O%! and I'! = ', 50 any arrangements achievable
by outs and ins are achievable by O~! and -1, and vice versa.

Let us argue that there is some sequence of Os and Is that
brings p to g. First, bring p to the top by a sequence of O~!s and
I"!s as follows: Deal into two piles, then placing the pile not
containing the card labeled p onto the other pile. Thus, each
time with the cards turned back face down, the card labeled p

24 FEBRUARY 2007

is in the top half. If this is repeated, then after at most r times,
the card labeled p comes to the top (here, 2! < 21 <2"). From
here, the current top card (labeled p) can be brought to position
g using Elmsley’s binary procedure explained in the
introduction. This may give a long sequence of shuffles, but at
least it shows it can be done. Next, we show how to bring any
card to the top efficiently.

Bringing any card to the top

In this section we solve Elmsley’s problem by finding a
succinct way of determining a sequence of in and out shuffles
that brings a card at position p to position 0. Since the
equations for the two shuffles involved different moduli (Egs.
(1), (2)), this seems like a messy problem. The key is to work
with inverse shuffles. These involve dividing by 2, taking the
floor, and perhaps adding n. The decision to add » or not
depends on the parity of i. We first disregard this issue of
parity and put it back at the end, as a correction term. Through-
out, we make constant use of the identity Lxl2]=1x2].

Step One: Building a Tree. Form a labeled binary tree 7(2n)
with 7 + 1 levels, where 21 < 21 < 27, as follows: The root Vg
is at level 0 and labeled with A(vy) = 0. In general, if v is a
vertex of T(2n) at level i which has been labeled A(v) = m, the
two ‘children’ of v (on level i + 1) will have labels Lm/2 and
Lm/2J+ n. Write this as Lm/2 + 1n] , where .= 0 or 1, for 0 < i
<'r. We illustrate this in Figure 4.

root
0. level 0

2n

) £n level 1
H/=Q/ \:1 t4=0 LZJ ty=1
4
) . [ ]_% f &) level 2
270/ \p=1 1,707\ ty=1 ‘2:V ¥2_1 1,20/ =1
8n 4n 121 21 101 61 14
o F 7 Fl 1§ 1§ (5 lews
LZ—Z"%J level k
=0 \{k=1

zglr(aTx1 L2n2(x:Fk J)

level k+1

level r-1

level r

Figure 4. The tree T(2n).

If ¢= 2:; ti2i » the value of the leaf v, corresponding to
the choices (1, #;, ..., t,_;) going down from the root is A(v,) =
L2nt/27|. More generally, it can be seen by induction that the
value assigned to vertex v at level k corresponding to the
choice (ty, 1, ..., t,_) is A(v) = [ 2n#(k)/2%] where

wh=Y"12"
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Step Two: Relating the tree to shuffling. For ¢ = Z: 2,
if we write 2nt = zizo si2i in binary, then on one hand,

2nt ;
ik‘| = }xz Sizl_kJ = "'Sk+2sk+lsk
L 2 izk

in binary. On the other hand,

2nt 2n & ;
TFL—;{(ZEZ + 212 )J
L =0

izk

= B—f(t(k) + 2k X)J
2nt(k)J

2k

=2nX+[

for some integer X = 0. Hence, the parity of | 2nt(k)/2%] is just
s;- This can be used to determine if the choice taken at any
vertex is I"! or 071,

7»(V) = L’Zﬂzt[gki'

t’y \k=1

Figure 5. A general branch,

level k

Specifically, if the value | 2n#(k)/2%] is even then t,=0
corresponds to O~! and #,= 1 corresponds to I!. On the other
hand, if ]_2nt(k)/2kJ is odd, then #; = 0 corresponds to I'! and 7,
= 1 corresponds to O~ (see Egs. (5), (6) and Figure 5).

The shuffle at a vertex is determined by u, = 5, + £, (mod 2)
where u, =0 > O 'and y, = I T,

Step Three: Putting the pieces together. We want to find a
shuffle sequence of O~!s and I's that will bring the top card to

position p. Thus, set
2nt _
27 P
2p_

<t< 2_(_1L1) N
2n 2n

This implies

Since 271 < 2n <27, then for any p, there is always at least
one and at most two integers 7 satisfying (7). In particular, if we
expand (p+1)/ 2n (base 2) as

p+l_
7 = .a1a2a3

then we can choose = :=1 ai2’"i =0, ..o (base2).
Equivalently, we can choose ¢ =| (p+1)2/ 2n] for 0 < p<2n-1.

For p =0, take t = 0, and for p = 2n -1, take t = 2" — 1. For
convenience, we let

— _Dr —
s=2nt-2"p=s_5_,..55,

(base 2).

Now, with 2az = 2 5,2',the 5,0 < i < r -1 provide cor-
20 ¢
rections to the #; to determine which of O~! or I'! is carried out

at each stage. The final result is summarized in the algorithm
given in the Introduction.

Remarks

(i) The description above determines inverse shuffles to bring
0 to p. It must be read ‘left to right’ to determine the sequence
of in and out shuffles to bring the card at position p to the top.

(ii) Example. If 2n = 52, p = 36, then
r=6, t=| L& |=45=101101 (base2)
s =2340-2304=36=100100 (base2).

Thus, ¥ = 001001 and OOIOOI (read left to right) is the
desired sequence.

(iii) As we remarked earlier, there may be two values of ¢
satisfying (7). In this case one shuffle sequence will have
length r and one will have length less than r (and will be the
shortest shuffle sequence bringing p to the top). For example,
take 2n = 52, p = 30. Then, r = 6, and since 64-30 /52 < 37,38
<64-(30+1)/52,wemay use t =37 or t =38. For t = 37 =
100101, s = 1924 - 1920 = 4 = 000100, u = 100001, which
results in the shuffle sequence IOOOOL. For ¢ = 38 = 100110,
s =1976 — 1920 = 56 = 111000, u = 011110, which results in
the shuffle sequence OIIIIO, which can be truncated to OIIIL.
Thus, in fact, only 5 shuffles are needed to bring the card at
position 30 to the top, and this is the minimum possible.

More generally, the algorithm shows that any card can be
effectively brought to the top in az most r shuffles, with 21 <
2n <2'. As we have seen, there can be two different shuffle
sequences that accomplish this, although one of them will
require 7 shuffles and one will need fewer than r shuffles. For
example, this is always the case when 2n exactly divides 2'p
(provided 2n < 27), since in this case we can choose ¢ to be
either 2'p/2n or (2'p/2n) + 1.

(iv) From the analysis above, we see that the 2"~ possible
perfect shufftle sequences of length r — 1 leave different cards
on top. This fails for shuffle sequences of length » unless 2n =
2". Alex Elmsley has exploited this in a special case. Working
with a packet of 8 cards (arranged in a known order), he has
the spectator deal into two piles (say, face up), and choose to
remember either top card, and drop the other packet on the
noted card. The cards are turned down and this is repeated with
two other spectators. Because of the uniqueness, the current
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top card determines all three selections. Marvelous
presentations and variations are explained on pages 80-88 of
Vol. II of Elmsley’s Collected Works.

Moving card p to position g

The reasoning behind basic properties of perfect shuffles
allows explicit determination of the shortest sequence of
shuffles to bring the card initially at position p to position q.
Form a tree T,(2n) with labeled vertices, similar to the tree
T(2n) in Figure 4, but with the root labeled by g instead of 0
(see Figure 6).

root

level 0
tg=0 to=1
22n ev
t,=0 L%J*ﬂ t1yL 2_I\t1=1 level 1
L‘!%il(kj level k
q+t2kn=ty§k) \\q+2t :; 1(k)+2k} level k1
I_ 28 _] I_ 2K+
Figure 6. The tree T,(2n).
Now, we need to find r = 7, _| ...1;ty (with £, = 0 or 1), to
satisfy
q+2nt
2
Thus,

Yp-q_, Y(p+Dh-q
2n 2n ’

As before, such a ¢ always exists and there are at most two
such #’s of length at most r. A correction term is computed as:

s=2nt+qg-2"p= 8, 1S,y 8,8,

with 5; =0 or 1. Taking the mod 2 coordinatewise sums,

+s +s 2,...,tl+sl,t0+s0

r-1 r—1? tr—2 r—

and translating these values to Os and Is gives the desired
sequence.

Example. Suppose n = 52, p = 51, g = 1. Thus, the bottom
card is to be moved to second from the top. Here, r = 6 and
(64-51 -1)/52 <t < (64 -52 — 1)/ 52. Thus, r = 63 = 111111.
Next, s = 3277 - 3264 = 13 = 001101. Taking the mod 2 sum
of tand s gives the final shuffle sequence IIOOIO. Now, of
course, we are not at liberty to delete the trailing O since an
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out shuffle does not preserve the position of card ¢, unless qis
Oor2n-1.

The analysis above may be used to determine some of the
“geometry” of the shuffle group (I,0) using I and O as
generators. For example, suppose we want to determine all
possible cycles of length m. For this, set p = g in the preceding
analysis. Thus,

2nt+q —g 2nt—=(2" =g —0, 2nt _l<g< 2nt ’
2" 2" 2" -1 2" -1

where 0 <7<2m—1,0<q<2n-1.1tis exactly these values of
g for which m-cycles exist using the card in position gq.

Example. Take 27 = 52, m = 5. The 32 possible values of ¢
are:

0,1,3,5,6,8,10,11,13,15,16,18,20,21, 23,25, 26,
28,30,31,33,35,36,38,40,41,43,45,46,48,50,51.

Thus, there are two trivial 1-cycles (O preserves the top and
bottom cards). The remaining 30 values break up into six
genuine S-cycles. For instance, for ¢ = 13, ¢ = 8 = 01000 and
§=52 -8 - 31-13 = 13= 01101. Thus, adding ¢ and s
coordinatewise mod 2, we get OOIOI, which gives

o] o 1 o i

B— 52651 33 y6__ 313

Research projects and final remarks

Much of the analysis above can be carried over to more
complex mixing schemes involving dealing more piles.
Consider dealing a deck of 3n cards face up, one at a time, into
three piles. Now the piles can be picked up left to right or right
to left. Determining just what can be done and how to do it is
a research project.

It may be possible to determine the diameter of the shuffle
group using the considerations above. We believe the group is
doubly transitive on the pairs {0,2n - 1},{1,2n -2}, ..., {n—
1, n}. Determining the shortest shuffling sequence bringing
two cards to two given positions may determine the shortest
shuffling sequence to bring any possible arrangement to any
other.

Arelated topic is to use the results on the basic properties of
perfect shuffles with £ > r to study the case when there are
many ways to bring the card at position p to the top. What is
the structure of these? What can be done? [

Further Reading

A history and extensive development is given in “The
Mathematics of Perfect Shuffles,” Adv. in Appl. Math (1983),
175-196, by P. Diaconis, R. L. Graham, and W. Kantor. For a
very nice, closely related paper see "Moving card i to position
Jj with perfect shuffles” by Sarnath Ramnath and Daniel Scully,
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Mathematics Magazine 69 (1996), 362-365. See also “Groups Acknowledgment
of Perfect Shuffles,” Mathematics Magazine, (1987), 3-14,
by S. Medvedoff and K. Morrison, and “Unshuffling for the
Imperfect Magician,” Math Horizons (2004), 13-16, by D.
Ensley. Practical instructions for card tricks, how to perform
an actual triple shuffle, and applications to computer science
are given in Magic Tricks, Card Shuffling, and Dynamic
Computer Memories by S. Brent Morris, published by MAA.

As this paper was being completed, we learned of the death
of Alex Elmsley. We dedicate it to his memory. This research
was supported in part by NSF Grants DMS 0505673 and CCR-
0310991.
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